
Investigating Human-Computer Interaction with

Motion-Capture Algorithms using a Microsoft Kinect

Bachelor's Thesis in Computer Science and Engineering

Jens Christensen

jens.christensen 'at' fripost.org

Oliver Carlsson

oliverc 'at' student.chalmers.com

Jonas Brandvik

jonasbrandvik 'at' hotmail.se

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2012

Abstract

This bachelor thesis investigates tracking of the human body in a 3D environment using known
computer-visual algorithms. This is done by evaluating a variety of filter-, detection-, and tracking-
algorithms, and assessing their strength and weaknesses in different environmental conditions that
are found in most indoor situations. We will also discuss different combinations of algorithms that
work together to optimize efficiency in a variety of conditions with limited resources.

The purpose of the developed application has been to evaluate how the algorithms perform
and investigate the different possibilities to track using an ordinary laptop and a Microsoft Kinect.
Finally, we discuss at what level of detail the tracking could be used and investigate if this kind of
system could manage emotional capturing i.e. tracking facial expressions simultaneously with body
movement.

i CONTENTS

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Problem . 2
1.4 Limitations . 2

1.4.1 Machine Learning . 2
1.4.2 3D Representation . 3

1.5 Outline . 3

2 Method 3
2.1 Documentation . 3
2.2 Unified Modeling Language . 4
2.3 Version Control . 4
2.4 License . 4
2.5 Libraries . 5
2.6 Programming Language . 6
2.7 Testing . 6

3 Data Processing 7
3.1 Microsoft Kinect . 7
3.2 Image . 8
3.3 Filters . 8

3.3.1 Smoothing . 9
3.3.2 Edge Detection . 9
3.3.3 Dilation and Erosion . 12
3.3.4 Histogram . 12
3.3.5 Histogram Back-Projection . 13
3.3.6 Average Filter . 15

4 Feature Extraction 16
4.1 Corner Detection . 16

4.1.1 Harris Corner Detection . 16
4.2 Refined Accuracy . 18
4.3 Good Features to Track . 19
4.4 Cascade Classification . 21
4.5 SURF . 25

5 Tracking 28
5.1 Template Matching . 29
5.2 Motion Templates . 31
5.3 Moments . 34
5.4 Motion Tracking . 37
5.5 Mean-Shift . 37

5.5.1 Cam-Shift . 38

ii CONTENTS

5.6 Optical Flow . 38
5.7 Block Matching . 39
5.8 Lucas-Kanade . 41

6 Result 45

7 Discussion 46

8 Conclusion 48

A Appendix A 53

1 1 INTRODUCTION

1 Introduction

This section clarifies the benefits and reasons to develop a motion tracking system. Three key items
are composed to concisely state the intention of this investigation. Because of the magnitude of
this research area a few limitations had to be set in order to focus on the purpose. The limitations
explains why 3D modulation and machine learning were left out.

1.1 Background

To communicate with computers through human interaction by using gestures and movements is
fascinating. The data acquired from a motion capturing system can be used in the field of robotics
for creating virtual interfaces and to make characters in computer games move realistically. The
motion capture suit used in the movie industry has multiple references attached to it, which aids
the software to acquire correct data, and analyzes where each reference-point is positioned. Motion
capturing suits are often used by the game and movie industry to create realistic movements for
computer generated figures. Positioning and motion analyzing of other objects are often done by
lasers. In the production industry, laser-positioning systems are together with industrial robots used
for locating objects and determine its position and movement. Both of these existing technologies
are expensive, and therefore the opportunity to create an alternative solution arises. Is it possible
to make an open source competitive motion tracking system that is easy to use and is addressed to
people and companies with limited resources?

Research in the field of computer vision is not a new area. It has existed for a long time (by
computer standards), and progress is being made continuously. One of the most common computer-
vision libraries is OpenCV, which was originally developed by Intel cooperation. It includes features
like shape recognition, a big collection of different tracking-algorithms, and motion-analysis tech-
niques. With this specific library, and a few others, all the necessary tools are provided to implement
a robust and accurate motion tracking application. The only thing required is a camera with depth
sensors.

Microsoft released the Kinect input-device in November 2010. It provides depth and color
amongst other features. It did not take a long time before the Kinect was hacked and libraries
to communicate with the device was released. The source community quickly embraced this new
technology, and all sorts of hacks circulated on the Internet. A framework for motion capture of an
arbitrary object could be built using the Kinect input device and various computer vision libraries.

2 1 INTRODUCTION

1.2 Purpose

As the development of the technology has progressed during the recent years, it has been proved
that it is possible to do motion-capture with acceptable accuracy without having expensive high-
tech equipment. The progression has gone from million dollar movie-projects, all the way down to
controlling the latest video-games with the Microsoft Kinect. The problem is to take the technology
to the next step, integrating motion-capture in everyday life and incorporate it into commercial and
non-commercial products. The project has focused on fulfilling three key purposes:

• To create and implement an open source tracking application that may be used for human-
computer interaction.

• To analyze a selection of tracking algorithms, find their strengths, weaknesses, and find appro-
priate combinations of techniques to get robust tracking results in an every day environment.

• To enable emotional capturing, capture facial expressions as well as body movement with
color- and/or depth-camera e.g, Kinect.

1.3 Problem

Motion capture is the technique used for computers to detect and identify objects and movement
during a video-stream. This can be solved by using a variety of algorithms that either identifies the
object as a whole, object detection, recognizes certain features that the object has, feature extraction,
or identifying movement in the video-feed, motion tracking. To know what algorithm should be used
when and where will be investigated in this project.

1.4 Limitations

In all sorts of projects, there need to be limitations so that developers can maintain focus of the
goal. This section will declare boundaries of the project and explain why certain aspects are left
out.

1.4.1 Machine Learning

Within the subject of computer science developers and scientists strive to increase computers rea-
soning, and intellectual capabilities. This branch in computer science is called artificial intelligence,
and a large part of this research uses machine learning techniques. The concept of machine learning
is based on computers and programs ability to predict logical outcomes through information ac-
quired from data sets [17]. By having machine learning in this kind of application, patterns can be
stored and accumulated in order to predict certain patterns and recognize objects in images. This
is something that will not be consider during the project because of its complexity.

3 2 METHOD

1.4.2 3D Representation

When tracking objects with a Kinect input device, the depth and RGB data retrieved can be mapped
into a 3D environment. One of the core functions in the motion capture application is the ability
to track arbitrary objects1. These objects can be virtually represented in a 3D environment. The
main purpose of this project is to focus on motion tracking. Therefore, mapping real world objects
into a 3D environment will not be handled.

1.5 Outline

The report discusses what tracking is, different methods for tracking, various filters, and object
feature enhancement techniques. Each section starts off with an explanation of how that particular
algorithm or technique works, followed by a discussion on how and when to use it. The algorithms
are also implemented in an application called Kinect motion capture where they can be evaluated.
Note that the example code uses the python wrapper from OpenCV.

The report is organized in the following order: Section 2 explains which technologies are being
used, the approach taken for evaluating tests, documentation, and licenses for the actual application.
Section 3 introduces the Kinect followed by the definition of a digital image, how a computer
interprets the information contained in an image, and a closer look on a variety of different filters.
Section 4 is about how to detect specific objects with certain features in an image. Section 5 is
about various tracking algorithms. In this section, tracking techniques are explained and evaluated.
The final two sections, Section 6 and Section 7, discusses conclusions and speculations of what can
be further analyzed.

2 Method

In parallel with the report, an application was developed[25]. To enable an efficient work pace, a
few key logistic issues were discussed before starting with the essential parts of the project. These
issues includes documentation, licensing, libraries, and choice of programming language.

2.1 Documentation

To document the process and findings, there were two specifications required.

• Version control compatibility : Easy to keep track of what has been written, when, and by
whom in all documents.

• Merging : There must not be any splices and the style must be consistent throughout the
document.

LaTeX [4] is entirely text-based, which allows any text-editor to edit the content. This simplifies
changes and additions to the content, because the structure and style is set at the top. Our version
controller is able to read and track changes inside the documents.

1Arbitrary Object - Refers to an object with a limited size, an unspecified shape, and an unspecified color, for
example a coke can, a toy, etc.

4 2 METHOD

2.2 Unified Modeling Language

A distinct model for the object orientated parts of the project was acquired by the unified modeling
language. Modeling and abstracting each part of the software in a good way helped the development
process and is valuable for future improvements of the source code. To generate class, sequence,
and case diagrams, we used a tool called PlantUML[8]. Since it uses plain text with syntax, it is
really easy to modify it with scripts and get all the advantages which version control provides.

2.3 Version Control

It is preferable to have version control to keep track of all the changes being made in the project
over time. The advantages of version control is the ability to check what code has been written or
modified by whom, as well as getting the advantage of history and progress for the project. Keeping
track of history is essential when there is a need to revert to a stable state if anything unpredictable
would happen. Git [51] was selected because a developer has his/her own local repository that gives
a decentralized structure where users can creates branches for different parts of the source code.
Git is open sourced under GPL v2.

2.4 License

Selecting the ideal license for a software developed project is important. There are many of them
and they may be hard to interpret from a legal point of view. Having a license is recommended
if the project should remain to be open source. A license enables the code to be copyrighted to
the author, and if a developer wishes to use the code, the copyright holder has to be asked for
permission. The following licenses were discussed for the project: GPL, BSD and MIT

The standard version of General Public License (GPL)[35] prevents organizations or people from
making the code proprietary, and all additional changes to the source code must remain in the form
of free software. To ensure all source code would remain free, the license itself clearly states all the
requirements that needs to be fulfilled in order to modify and/or release the source code.

Berkeley Software Distribution (BSD)[2] license is non-comprehensive and easy to understand,
with a legal disclaimer. The copyright holder will not be held responsible for any damage that his/her
source-code may cause and there are small restrictions for redistribution of source-code. There are
currently two different versions of the license, excluding the original one: BSD-3, and BSD-2. Only
difference between them is that the BSD-3 clause license protects the original copyright holders
and/or organization to be used later for promotion purposes. This concerns software released using
the original source code.

The MIT License (Massachusetts Institute of Technology)[6] is similar to the BSD-2 clause
license. A disclaimer protecting the copyright holder from legal interventions if the source-code
causes any damage and thereby redistribution of the source-code by a third party, has very small
limitations, both in commercial products and open-sourced software.

It is desirable to select a license which reflects the overall spirit, and openness of the framework
we are developing, without restricting the user. The license choice for this project was given in favor
for the BSD 3-clause license. The main reasons for picking the license were due to its simplicity.

5 2 METHOD

The license is easy to understand, and the fact that the framework can be used both in open source,
and proprietary products.

2.5 Libraries

Various libraries have been validated thoroughly. What features the library provides, how active
the community is, and which license it is released under are the most important criteria when the
choice of libraries was made. Below is some information about different open source libraries that
were considered being used during this project.

OpenCV

OpenCV (Open Source Computer Vision Library)[17][1] is a library with its main focus on real-time
applications. It is written in C and C++ developed by Intel during the later years of the 1990’s.
The library has over 500 functions in different areas of vision and image analysis including: gesture
recognition, facial recognition, motion tracking, and stereopsis (3D vision). It also includes Machine
Learning Library. This sub-library is developed for statistical pattern recognition and clustering
but is general enough to be used for most machine learning problems.

PCL

PCL (Point Cloud Library)[46] handles data acquired from modern visual sensors such as: laser
scanners, stereo cameras, and ToF-cameras2. The scene is created by points, and each point contains
a position in space (x,y,z) and optional RGB color or gray-scale. Point clouds create a three
dimensional picture, PCL’s purpose is to merge point-clouds together, filter out uninteresting data
points, identify key points in a scene, and sort data into tree-hierarchies such as KD-trees or Octrees.

NumPy

The numPy[7] is a library created for Python exclusively to handle multidimensional arrays in an
efficient and fast way. This will come in handy when handling large point-cloud matrices, and
manipulating raw data acquired from the Kinect device.

OpenNI

OpenNI (Open Natural Interaction) refers to human interaction, voice and gestures. This framework
defines APIs to enable voice recognition and hand gestures as an interactive way to communicate
with a device.

OpenKinect

OpenKinect[27] is collection of open source libraries for Microsoft Kinect that enables the device to
work on Windows, Linux, and OS X. Their primary focus for the time being is the development on
libfreenect[5]. This library is the one being used as drivers for the Kinect in the project.

2Time-of-Flight camera estimates depth in a scene with a single light pulse instead of laser beam point-by-point.

6 2 METHOD

These are the different libraries considered for the project. All except PCL has been used and
tested in the application. OpenNI and OpenCV has their own solutions for creating 3D-scenes
without using point-clouds.

2.6 Programming Language

The OpenCV library has three different languages to choose between: C[49], C++[45], and Python.
A Java wrapper is in development as well but is not finished. Python[52] is a high level programming
language and is the language that was used in this project. The following reasons determined the
choice of language. Note, Python is used for all the OpenCV code examples.

First of all, Python uses automatic garbage collection. This frees programmers from the worry
of memory allocation, as it will be taken care of. Both in C and C++ it must be micromanaged.
Lists are powerful tools that do not exist in either C nor C++. There are ways of creating objects
that acts like lists, but in Python, lists exist as a data type. Lists lets the developer do fast
calculations. In Python, block delimiters consist of indentations instead of curly brackets such as in
C and C++. This makes the code cleaner, easier to read and understand, and help developers to get
a good overview of one another’s code, which in turn provides the ability to work more efficiently.

When programming together with other developers, it is important to easily understand each
others codes. Therefore, the PEP8 naming convention[53] will be used to make the code more
consistent and readable. In general, we chose Python as our developing language because it is an
efficient language that only requires a few lines of code to achieve greater effect compared to C and
C++.

2.7 Testing

It is vital to have standardized ways of testing features and modifications of the implemented source
code. To check the quality of the product is of course a necessity. Some code can easily be tested
automatically with unit testing [58]. Unit testing will not guarantee the absence of buggy code, but
it is nevertheless a good practice writing these tests, especially when refactoring or merging code
from other developers and incorporating the changes into the software.

When all the unit tests has been executed, and evaluated, it is time for integration testing [43].
In this stage, all different modules are put together and validated one by one. The developer is
supposed to make sure that various parts of the program work together as intended. If unit testing
is not applicable, interactive testing is the only approach applied and the current input and output
data should be evaluated. Interactive tests are very tedious but since a highly interactive software
were developed, where arbitrary objects in the image can be tracked, this testing approach were
used to evaluate tracking algorithms and different filtering techniques.

The system was also tested in various light conditions, examining the ability to detect different
kinds of objects and analyzing the effects light conditions has. The objects varied in size, shape,
and color to really test the robustness of the applications and tracking abilities. Finally various
velocities, acceleration, and different directions was used for every object being tracked. The results
from previous mentioned properties, is discussed for each specific algorithm.

7 3 DATA PROCESSING

3 Data Processing

Before there is any chance of tracking an object, there must first be an object to track. This is
self-evident but the challenge is then to extract that specific object from an image. To improve
results it is advisable to change the appearance of the image to enhance specific features of the
desired object. This is done by using a variety of filter-algorithms. By then using a mathematical
approach, it is possible or at least more likely that the desired object is registered.

To get a better grip of how filters affect the image, it is recommended to get an understanding of
the hardware that has produced the image and what data the image contains. The project utilized
two different camera devices, an ordinary webcam i.e. an RGB-camera or the Kinect. All the
implemented software works on both devices if nothing else is written.

3.1 Microsoft Kinect

The Kinect has both an IR depth-sensor and a RGB-camera, each feeding in 640x480 pixels at a
frame rate of approximately 30Hz. In comparison with other modern motion-capture equipment the
hardware in the Kinect is poor, which leads to a great deal of noise[27]. In Figure 1 a Kinect device
is displayed. To use untouched raw data provided by the Kinect for our implementation would be
inefficient and probably ineffective. Instead the data gathered will be filtered before applying it
to any kind of tracking algorithms. Because the Kinect uses two different cameras, the feeds need
to be processed individually. The Image processing will take care of filtering, colors, and scaling.
Starting of, by enhancing colors or changing the input to gray-scale prepares the image for different
tracking algorithms that may be color or contrast dependent. Filtering removes or enhances the
data from the feed. Removing data refers to, e.g., noise reduction by using Gaussian filtering.
Enhancement refers to, e.g., increase of contrast to ease the process of finding contours for tracking
objects. Scaling frames allows algorithms to focus on a certain area in a frame or decreasing the
resolution for faster execution of computationally heavy algorithms.

Figure 1: Microsoft Kinect

The depth processing handles scaling on the z-axis and also makes the image three dimensional.

8 3 DATA PROCESSING

This is used to track objects or points of interest (POI) in a 3D environment. To be able to capture
natural movement of objects and people this is essential due to the fact that most motions are
affected in all three dimensions.
Both feeds will still be interpreted as images even though they will contain different kinds of data.

3.2 Image

The humans have an extraordinary ability to interpret images. To identify and track multiple
objects and to distinguish them from each other in almost any kind of light-conditions are done
unconsciously and is for the most part taken for granted. Unfortunately, to explain and define how
objects should be separated and, which POI to track is not trivial.

To understand how to track an object with the help of images, it is probably appropriate to
know how the data of images are represented. Because digital images consist of pixels, i.e. specified
points with two-dimensional location coordinates and a set of values, which most commonly is a
representation of color. The easiest way to manage the enormous amount of data that each image
contains, is by representing the image as a two-dimensional matrix.

In Table 1, a four pixel image is represented, where each pixel has an unique color and its
corresponding raw-data matrix. As seen, each element contains red, green, and blue value, which
is the normal RGB coding. Each color is represented by 8-bits. This amounts to over 16.7 million
color-combinations and contributes to the challenge of identifying objects in a scene. It is impossible
for a person or computer to identify objects in an image by just traversing through one pixel at a
time. But modern computers together with sophisticated tracking algorithms are rather good at
identifying patterns and here is where filter-algorithms comes in handy.

=
[
(255, 0, 0) (0, 255, 0)
(0, 0, 255) (38, 207, 213)

]

Table 1: A 2x2 pixel image and its corresponding matrix

3.3 Filters

In order to make it easier for the computer to distinguish separate objects in an image filters are
used to aid and enhance specific features. This makes each object easier to track. This section will
be dedicated to explain how various filtering techniques are used and their different purposes.
Most of the filtering methods described in this section use small two dimensional matrices, called
kernels, that are multiplied with the image, which in turn gives a new representation of the image,
one that has the filter applied. This mathematical phenomenon is called convolution. A kernel’s
middle point is often referred to as the anchor, but the anchor’s position can be changed within the
kernel based on how each pixel value should be transformed.

9 3 DATA PROCESSING

3.3.1 Smoothing

One of the most common forms of noise reducing techniques is smoothing. This is achieved by
convolving an image with a kernel, i.e. mask, such that a blurring effect that reduces noise is
applied to the image. The simplest form of smoothing is by mean filtering, it changes the intensity
of each pixel by calculating the average value from its surrounding pixels, Figure 2a. The size of
the kernel depends on the amount of surrounding pixels that is taken into calculation and all the
values in the kernel are the same, i.e. it is unweighted. However, this filtering method fails when it
comes to preserving edges. Therefore, when smoothing an image for the purpose of reducing noise
and still have patterns suitable for tracking, Gaussian smoothing is used.

Gaussian smoothing is applied in a very similar way as the mean filter, but instead it uses a
weighted kernel. The kernel values are defined based on the bell shaped Gaussian distribution,
Figure 2a, with the anchor as the maximum value. In other words, the kernel is weighted towards
the middle with a circular shape. Even though Gaussian-filter is used, edges are still blurred but
not in the same extent as with the mean filter. There is a trade-off between the amount of noise
reduced and to which extent the image is blurred.

(a) Smoothing with mean filter (b) Smoothing with Gaussian filter

Figure 2: Smoothing filters

The following matrices are examples of kernels that are used for the respective smoothing tech-
nique. The major difference is how the kernels are weighted. A Gaussian kernel should usually be
between 3x3 and 5x5 in order to achieve optimal result[28].

3x3 mean kernel :
1

9

1 1 1
1 1 1
1 1 1

 5x5 Gaussian kernel :
1

273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

Most of the tracking algorithms that are described in this report are very sensitive to noise.

That is why smoothing has an essential role to play. Unless noise is reduced, features, such as edges
and corners, will be harder to extract and object motions won’t be calculated easily.

3.3.2 Edge Detection

To specifically distinguish among different objects in a 2D-image and be able to track them there
exists techniques that are built upon using edge detection algorithms. There are loads of various
edge detection methods when it comes to computer visualization. This project treats the most
common ones which also are implemented in OpenCV: Canny, Sobel, and Laplace edge-detection.

10 3 DATA PROCESSING

The following section begins with an explanation of each technique followed by a comparison that
decided which one that were used for this project.

Sobel Edge Detection

Sobel operation is a way of computing the gradient in an image by derivative calculations. By
measuring the absolute gradient magnitude in the picture after the Sobel operation has been applied,
edges can be found. To be able to calculate the first derivative along both the x and y-axis it uses
two kernels, one for each axis. Convolving the kernels with the image returns a measurement of
intensity changes in both directions which can be interpreted as edges, and with this information
its gradient direction can also be calculated. The gradient direction tells how edges are oriented.
The following two kernels are most common for Sobel operation[54][18].

3x3 Sobel kernel for derivative of x :

−1 0 +1
−2 0 +2
−1 0 +1

3x3 Sobel kernel for derivative of y :

+1 +2 +1
0 0 0
−1 −2 −1

Laplace Edge Detection

This technique is similar to Sobel, which means it calculates the derivative with the help of convo-
lution, but instead it calculates the second derivation and finds edges by searching for zeros in the
derivative curve. Before adding the Laplace-filter a Gaussian-smoothing filter is applied in order to
remove rapid fluctuation in the intensity changes[54][18].

Figure 3: In the first graph to the left f(x) represent a change in the intensity. In the second
graph the first derivative, f ′(x), is calculated, this one is used by Sobel. Finally there is the second
derivate, f”(x), where the zero crossings gives the edge.

11 3 DATA PROCESSING

Canny

The Canny algorithm uses a higher and a lower threshold (a hysteresis), to determine edges. Each
pixel’s gradient is compared against the hysteresis. When a pixel has gradient that is below the
lower threshold it is discarded. All pixels that are above the higher threshold will be marked as edge
pixels along with all the pixels that are inside the hysteresis and connected to a pixel that is above
the high threshold. This is one of the most common and used edge detection algorithm[23][19].

Edge Detection Results

There where some qualifications that needed to be satisfied during the selection process of the
algorithms: noise-resistance, edge-clearness, and backlight-resistance. Empirical studies where done
in order to research each quality. The Canny algorithm gave the clearest edges, this is because of
the binary representation of the returned image where each pixel is displayed as either black or
white. Sobel gave the most dull edges, but when it came to noise resistance, Sobel and Laplace
were dominating. When Canny was applied to a series of images the video output were flickering
due to lack of noise resistance. The algorithm that provided the best result against backlight was
Laplace, while Canny handled it poorly.

For this project the Laplace were chosen due to best average results. In Table 2 the various
edge detection algorithms are compared with each other in backlight. In Table 3 we have composed
the comparison between the different methods like a scoreboard. Each number represents a grade,
where three is the highest and one is the lowest.

(a) Original (b) Canny (c) Sobel (d) Laplace

(e) Original: backlight (f) Canny: backlight (g) Sobel: backlight (h) Laplace: backlight

Table 2: Images of the different edge detection algorithms with and without backlight.

12 3 DATA PROCESSING

Canny Sobel Laplace
Noise Resistance 1 3 2
Edge Clearness 3 1 2
Backlight Resistance 1 2 3
Total 5 6 7

Table 3: Comparison

3.3.3 Dilation and Erosion

The purpose of various filtering operations is to emphasize certain features by manipulating image
contrast. Erosion and dilation are the most common morphological operations and has that funda-
mental property. Roughly speaking, applying erosion-filter on an image will expand the darker parts
and shrink the lighter parts. The opposite will happen when dilation is applied. This is done by
having a small window, normally with a size of 3x3 pixels, that moves over the image. For each pixel
the algorithm will look for the largest pixel value, within the boundaries of the window, and replace
the middle pixel with it. When erosion is applied the window searches for the smallest pixel value
instead. In the Figure 4 a dilation and an erosion filter is applied on two binary images where dark
parts mark low intensity. The reason for including erosion and dilation in this report comes down
to its ability to reduce noise, remove openings in an object so that it is not recognized as several
objects and separate different objects from each other. For example, when the Kinect displays the
depth map of the recorded image it can give a porous impression in the way that the image contains
a lot of holes. This can be adjusted by applying the dilation filter, such that the holes shrink. In
this project we use OpenCV’s implementation of these filters; cvErode() and cvDilate()[20].

(a) A binary picture with
high intensity

(b) The erosion filter has
been applied to the picture in
a)

(c) A binary picture with low
intensity

(d) In this image the dilation
filter has been applied so that
the dark parts has shrunk

Figure 4: Four images where the application of erosion and dilation has been done.

3.3.4 Histogram

As discussed in the image section, the data representation of an image consists basically of three
different values: red, green, and blue. By combining these three values on each pixel with a value
that goes from 0 to 255, each pixel can get any scale of colors.

13 3 DATA PROCESSING

Histogram is a way of collecting data in a simple and lucid model. Storing information from an
image as a histogram by extract color data from each pixel makes it easier to identify and compare
different images with each other. The way that the information is converted into a histogram is by
changing the two dimensional representation into one dimension. This is done by first, defining how
many bins the information should be divided among. Think of the bins of a partition of the x-axis.
If there are just as many bins as there are x coordinates, each bin will hold a value that corresponds
to the amount of color for all y-values at that x-coordinate. A histograms depth is determined by
how many different colors that are measured. That means that each depth value corresponds to a
certain color: red, green, or blue[21]. Figure 5 gives a graphical representation of how histograms
stores information.

During this project histograms was mainly used in combination with back-projection, a technique
that with the help of histograms can filter background and foreground. This will be described more
thoroughly in the following section.

Figure 5: (a) First, there is the raw data represented in two dimensions. (b) This data is then
distributed between 8 bins. (c) The representation is then changed such that the data is put as
a value in each bin. (d) Applying splines to the new data representation gives the trend of data
changes.

3.3.5 Histogram Back-Projection

Tracking objects by color is very effective in sets where the object by itself distinguishes from the
rest of the scene. There are a number of filters to prepare for colors tracking, the histogram back-
projection is a primitive way of converting the standard image to an image where each pixel has
been rated depending on the resemblance to the histogram.

Histogram back-projection is used to enhance a specific color combination in an image by using
its histogram. It is a primitive algorithm that traverse through every pixel and gives a value from
zero to L, where L represents the highest depth-value in the image. A high value implies a close
match between the pixel and the histogram. This creates a gray-scale probability image. When all
the pixels has been evaluated, the image gets rescaled. The formula below scales the probability-
image according to a factor of the bit-depth divided by the highest-value. This basically means that
the algorithm extracts the best and the worst match and then rates the image accordingly.

14 3 DATA PROCESSING

{
p̂u = min

(
L

max(q̂)
q̂u, L

)
u=1...m

}
,

where p̂u is a specific pixel in the image. The pixel’s value q̂u is recalculated by being multiplied
with the factor of L

max(q̂) where L is the maximum bit-depth and max(q̂) is the pixel with the best
match in the image[9].

It is worth noting that this primitive operation is very sensitive, this is due to the fact that
the algorithm is all color dependent and it makes the result varying. There are a few reasons for
this, the most obvious is light dependencies. The light setting in a scene will naturally affect the
reflective light of the objects. An object with a solid color will in most cases reflect its natural color
blended with the overall background light.

(a) Original (b) Hue-histogram (c) Histogram Back-Projection

Figure 6: Histogram back projection when light comes from side.

As seen in Figure 6, the Sample area for the histogram is taken from the left side of the face.
Even though the skin is the same color, the light from the window is enough for the back-projection
to prove that the right side of the face does not reflect the same color as the left. There are ways to
manipulate the sensitivity of the Back-Projection, but the consequences of turning the sensitivity
down is an increase of the background noise.

There are a few intuitive ways to improve the result. By selecting a well-lit scene with a single
color background that differs as much as possible from the color being emphasized. As seen in
Figure 7, There is minimum noise and the helicopter-body is very clear. The black-spots on the
body are blinking led lights in various colors.

The standard function CalcArrBackProject() in OpenCV, is specialized in extracting skin color
from the rest of the scene but it can be used for most colors. There is some work to be done before
actually being able to use the CalcArrBackProject function.

15 3 DATA PROCESSING

Figure 7: Histogram Back-Projection, helicopter

To begin with, the standard RGB-image must be converted into HSV, this is done by using the stan-
dard function CvtColor() with three parameters, where: img is the original RGB-image, img_hsv
is the output image, and CV_BGR2HSV is an Integer that converts each element in the image
matrix, from Red, Green, and Blue to Hue, Saturation, and Value (HSV) that can be translated to
color, gray-tone, and brightness.

Hue is the only interesting value in this case Split() is recommended to extract hue from HSV.
The function that does the magic is called CalcArrHist() with the parameters: [sel], hist, and nil.
There is no official documentation of this function but it takes: [sel], which is the part of the image
wished to be converted to a histogram, hist is the output histogram, and nil is the minimum-value
wished to be used, in most cases it is zero. The last step is to use CalcArrBackProject() with the
parameters: hue, backproject, and hist where: backproject is the output image that is constructed
by using the hue image and the histogram.

Histogram Back-projection Results

The Histogram Back-Projection filter is a fast, powerful algorithm, which is a great aid for color-
based tracking algorithms, e.g., the mean shift algorithm. However, if there are no areas in the
image that corresponds to the local hue-histogram the algorithm will still find the "best" result,
which makes the back-projection image noisy or look like a chess-board because the image will still
contain a relative scale.

3.3.6 Average Filter

The average filter is a method to enhance image quality and reduce noise. It does so by sampling
an arbitrary sequence of images, and take the average RGB-value of every pixel. This operation
requires a lot of performance, and for the time being is not recommended for a live video stream.

16 4 FEATURE EXTRACTION

However, it could help to implement the code to execute on the graphics-hardware, in that case
it would be possible to pipeline the process which, would reduce the stress on the CPU making it
possible to run live. The filter’s purpose is, for the time being, to produce screenshots for promotion
purposes only.

4 Feature Extraction

It is not suitable to look at all the data within an image when trying to detect a certain object or
property in the picture for performance reasons. This section will look at a few common algorithms
to extract specific features or patterns from an image. The first subsections discuss ways to extract
points suitable for tracking followed by, two algorithms for detecting a specific object in a picture.

4.1 Corner Detection

To track an object in a video-feed, each frame is compared against the previous frame in order to
distinguish how the object has moved, this is done by observing the differences of the two frames.
But in order to find differences in the two images there has to be points of interest that is related
to the object and analyzed when tracked. These points are often corners and can be found by
using corner-detection algorithms. For this project we have narrowed down the corner-algorithms
discussed to Harris-corner detection, refined position and good features to track, because they are
all supported by the OpenCV library and gives a picture of how corner algorithms works in general.

4.1.1 Harris Corner Detection

The main concept behind Harris corner detection is to use a small window to move over the image
and compare the intensity after each shift at every pixel. In other words, the algorithm looks at
how the intensity is changing in each direction from every point. Usually a threshold is set such
that only intensity changes over a certain value is taken into consideration. There are three different
cases of intensity changes:

• no change in either directions ⇒ no corners or edges are found.

• intensity change in one direction ⇒ an edge is found

• intensity change in both directions ⇒ a corner is found

This algorithm uses an auto-correlation function to find the changes:

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2,

where E(u, v) is the change after shifting, w(x, y) is the window function over all x and y, I(x +
u, y + v) is the shifted intensity and I(x, y) is the current intensity. By finding the Taylor series
on the shifted intensity and extract the partial derivatives from I we get the following formula for
I(x+ u, y + v) :

I(x+ u, y + v) ≈ I(x, y) +
[
Ix(x, y) Iy(x, y)

] [u
v

]
,

17 4 FEATURE EXTRACTION

when applying this approximation into the original formula we get:

E(u, v) =
∑
x,y

w(x, y)

([
Ix(x, y) Iy(x, y)

] [u
v

])2

,

this in turn can be substituted down to:

E(u, v) =
[
u v

]
M

[
u
v

]
,

where the matrix M is defined as:

M =
∑
x,y

w(x, y)

[
I2x IxIy
IxIy I2y

]
.

By using these equations the intensity change is visible when analyzing the eigenvalues[10] of
M, λ1 and λ2. Each of them represents a direction of where to find an edge. In order to determine
the quality of the edge/corners that is found, the following formula will give a response value based
on the eigenvalues:

R = Det(M)− k ∗ Trace(M)2− > R = λ1 ∗ λ2 − k(λ1 + λ2)
2,

where k is a constant that enhances the result and is found through empirical research. When R < 0
there is an edge present, R > 0 there is a corner, and when |R| is small there is neither an edge nor
a corner[34]. See Figure 8 for illustration of R.

(a) The window detects an
edge, R < 0

(b) The window detects a
corner, R > 0

(c) The window does not find
any major intensity changes,
|R| is small

Figure 8: Three different cases when the search window is looking for corners/edges

18 4 FEATURE EXTRACTION

In OpenCV the Harris corner detection is implemented as a method, CornerHarris(), with the
arguments: img_src, harris_dst, blockSize, apertureSize=3, and k=0.04. Given an image, img_src,
the method will return a new representation of the image, harris_dst, where each pixel is represented
by an R value that was described in the previous formula. The blockSize parameter decides how
many neighborhood pixels3 that should be taken into the calculation. When CornerHarris() is
called in OpenCV it also uses Sobel4 to find gradients. ApertureSize=3 sets a default size of 3x3
on the Sobel kernel. The final parameter, k, is the variable that was mentioned in the previous
paragraph which is meant to fine tune the calculations. Its default value is set to 0.04. The Harris
corner detection algorithm was the source of inspiration when the good features to track algorithm
was developed, which will be explained in Section 4.3.

4.2 Refined Accuracy

Often when trying to detect the position of an object, pixel level accuracy may be enough. However,
this should not prevent a user to explore a higher accuracy for calibration of the camera or detailed
tracking purposes, in these cases positions needs to be calculated on a sub pixel accuracy. To do
this, u · v = 0⇔ v is orthogonal to u can be used. Note that u · v is the dot product of u and v.

v

u

The actual calculation of the refined position of the point is done by an iterative algorithm, which
will loop until the accuracy criteria has been fulfilled. To do this calculation, it is not necessary or
efficient for that matter, to incorporate all the pixels in the image. A smaller search window around
the point of interest will suffice.

(a) Search window (b) Gradient movement

Figure 9: Execution of refined position

3The number of neighborhood pixels are blockSize x blockSize.
4The Sobel filter is described in the edge detection section.

19 4 FEATURE EXTRACTION

The green rectangle in Figure 9 (a) is the search window, which will move in the direction
illustrated by Figure 9 (b). The position of the POI will be refined to the point p0. For each iteration
the search window will move in the gradient direction until the required accuracy is obtained. The
formula used for this calculation looks as follows:∑

i

(Gpi ·GT
pi)n,

where G is the image gradient matrix, and pi is one point ∈ n. The center of all neighboring pixels
is the n variable.

The refined positions is executed by calling the FindCornerSubPix() method in OpenCV. The
arguments for the method is: image, corners, win, zero_zone, criteria.
The image argument specifies in which frame the refinement should occur, for the list of interest
points, the corners argument. The search window size, the win argument, is in the form of a tuple
(width, height). The zero_zone argument which is also a tuple, (width, height), determines the
area in the search window where the pixels should not be taken into account for the refinement
calculations. The criteria argument is an OpenCV class called CvTermCriteria. The accuracy
of the calculations is determined by the epsilon-variable in the class. If epsilon is assigned with
the value of 0.2 the sub-pixel accuracy will be 1

5th of a pixel. The last variable to assign in the
criteria is the max_iter argument, which determines the number of iterations the algorithm should
execute. The benefits of refined location of points are explained in various tracking algorithms in
later sections.

4.3 Good Features to Track

The development of capable tracking algorithms is highly dependent on efficient use of the computers
resources. Many calculations put a heavy load on both the CPU, RAM, and fast ways to find good
features to track must be developed. A ’good feature’ can vary from time to time depending on the
information that is wished to be extracted and analyzed. However, a good feature will always have
stable properties, which does not distort or diminish even though the conditions in the image vary.
The different conditions could for example be: illumination, back lightning, and noise. One way to
get values which fulfills previous mentioned criteria is to calculate eigenvalues in the picture. More
precisely, finding eigenvalues which are aligned on a corner, of the object in the image[48].

Using corner Harris, or dividing the image into smaller squares, calculate the derivatives of
all the squares, and extract the smallest eigenvalues will give you points suitable for tracking.
This is the principle used in GoodFeaturesToTrack() method in OpenCV. The method requires six
arguments: image, eigImage, tempImage, cornerCount, qualityLevel, minDistance. There exist four
more arguments which are optional: mask, blockSize, useHarris, k. The first image argument is
the picture to execute GoodFeaturesToTrack(), henceforth known as GFTT, method on. The two
following images are temporary images to be used for the eigenvalues calculation. The properties
of the points is determined by, the succeeding three arguments; cornerCount determines how many
corners to be detected, the threshold for a corner to be returned is stated by qualityLevel, and the
next argument determines the minimum distance between the found corners. The mask argument
determines in what part of the original image the GFTT points should be extracted.

20 4 FEATURE EXTRACTION

If features should be extracted using corner Harris, the useHarris argument is set to an integer bigger
then zero. The blockSize and k argument is used in the corner Harris formula, See Section 4.1.1.
The GFTT algorithm will return a list of points which are good features to track in the image.

Figure 10: Points returned after executing GoodFeaturesToTrack()

Good Features to Track Results

Even though an object is stationary in the images recovered from a camera device, the list of points
returned from GFTT will not always be equal to the list returned from the previous frame. This
is due to noise in the image, which will distort the edges of each object. Therefore, to be able to
track an object using the data retrieved from the GFTT algorithm, an approximation calculation of
the object center has to be made. Calculating the center of the set of returned points can be done
by BoundingRect(). This method takes a set of points and returns a CvRect, which is a rectangle
bounding every point in the set.

To track an arbitrary object in a specific depth, the GFTT algorithm could be used for satisfying
results. The first thing to do is to set clipping5 on the depth image. Clipping on the depth image
can be achieved by, the logical operation and, on the depth array. The depth array is the raw depth
data acquired from the Microsoft Kinect device, and the type of the array is a numpy ndarray,
which is a multidimensional array. The next step is to apply the GFTT algorithm on the depth
image with clipping. Finally, calculate the center of the rectangle using the CvRect returned from
the BoundingRect() method, and this fairly simple tracking algorithm is complete. This approach
works well if you want to track the entire object present on a specific depth, but it will not work
for multiple objects or if only certain segments of the object is of interest when tracking.

5Clipping is when a max and min values of the field of view is set, i.e. remove objects in the foreground and/or
background.

21 4 FEATURE EXTRACTION

By adding some minor tweaks to the above algorithm there will be support for multiple objects
tracking. The first problem to solve is to distinguish the separate objects in an optimal way in order
to be able to track the objects with GFTT. One approach would be to: first display the first object,
set the region of interest(ROI) of that object, and start tracking it. This procedure will be applied
for all the objects to be tracked. Another solution would be to split the screen in multiple ROI:s,
and start tracking the object in the various ROI:s. After the decision of which objects to be tracked
and their corresponding ROI:s are set, save the center coordinate of each object. This coordinate
is going to be used when updating all the tracked objects ROI:s for every frame the objects are
being tracked. For each ROI, make a subtraction of the previous center coordinate with the current
center coordinate of the object; let δ be the difference. Add δ to the (x, y) coordinate for every
tracked objects ROI. The updating step will be done for every image where tracking should occur.
Note that both these suggestions are using the depth image with added clipping.

The two proposed algorithms are fast and easy to understand, but they have large limitations.
They will work really well if the objects in question will not be too close to each other, and are
visible at all times. To cope with the possibility of blocked objects, template matching or preferable
SURF should be used for updating the tracked objects current positions.

Another observation of GFTT is that it is especially good to use when an edge detection al-
gorithm and the region of interest around the object is applied. However, it will give unreliable
results if the image contains too much noise. The noise will distort and reduce the edge clarity when
applying edge detection algorithms.

4.4 Cascade Classification

The tracking system can not identify similarities between two objects that are equal, if there are
minor changes in: size, camera perspective, and illumination; even though a variety of filtering
and enhancement technologies are used. Think of a human face in profile for instance. Even if
different heads in an image would almost have the same shape, size, and skin color it would still
be mathematically hard to recognize the patterns, and determine that it is indeed a human face.
To be able to recognize a certain feature or property in an image, cascade classification algorithms
can be used. The cascade classification algorithms, which will be discussed in this section, uses
different machine learning algorithms. Since this report is not about machine learning, the focus of
the discussion will be directed to how certain properties and data retrieved from machine learning
algorithms can be used for object detection and tracking purposes. The focus is not on how that
particular machine learning algorithm actually work.

In OpenCV, there are two algorithms to recognize objects in an image by using cascade clas-
sification. Viola01[55] is the first and Lienhart02[39] is the second algorithm used. The Viola01
algorithm can be divided into three major stages:

Integral image
This is where the pixels in the image are processed to a summation of the probability that a
Haar-like feature is currently in a particular sub rectangle in the image.

22 4 FEATURE EXTRACTION

Learning algorithm
The image is traversed, building a decision tree using the AdaBoost[31] algorithm. Every
sub-tree is a classification, which matches Haar-like feature patterns in every sub-rectangle.

Cascade
The final stage of the Viola01 algorithm. This is the traversing step of the decision tree
created in the learning phase. Each sub tree is matched with the Haar-like feature criteria
and determined if it fulfills all the properties.

Integral image is created by traversing the original image in gray scale, and divide the image to
smaller rectangular parts. Each rectangle is then summarized recursively with the following function:

g(x, y) =
∑

x′≤x,y′≤y
h(x′, y′),

where (x,y) is the pixel coordinate ∀pixels ∈ Image. Note that, the summation is done recursively
∀rectangles ∈ Image, but just for the sub-rectangles left of the (x,y) coordinate and all the way
back to the first sub rectangle. The recurrence is then applied using the original image, which is
the h(x, y) function. The two recurrences are:

c(x, y) = c(x, y − 1) + h(x, y),

g(x, y) = g(x− 1, y) + c(x, y),

where c(x, y) is the probability that the sum c(x,−1) = 0, and g(−1, y) = 0 for each row.
Let subrectangles(s) and image(i); the recurrence is executed ∀rows ∈ s, ∀s ∈ i.

The learning algorithm used by Viola01 is a machine-learning algorithm called AdaBoost. The
boost algorithm is used for constructing a decision tree using a large set of images, containing the
object which will be classified. Doing this procedure on a large amount of data will train the system
to return more accurate results, and at the same time keep a generalized knowledge of the patterns6.
The data the Viola01 algorithm is actually looking for when building the decision tree is, Haar-like
features. The features are represented as two, three, and four rectangle features, Figure 11.

6Generalized knowledge means that the decision tree will just know ‘enough‘ to determine if a specific feature
fulfills the criteria. This is necessary since a well-trained system will just have a general idea of the features, which
it is required to find. This means that it will, with high accuracy, find the correct patterns in the image, with the
ability to learn even more for each iteration.

23 4 FEATURE EXTRACTION

(a) Two-feature (b) Three-feature (c) Four-feature

Figure 11: Haar-like features

The borders are a representation of a smaller rectangle in the image, where the classification of
an object will occur. The black boxes inside the borders are the sum of all the pixels in that specific
rectangle. The summation is executed on all the pixels present in the black box and subtracted by
the corresponding sum of every pixel in the white boxes. As shown above, the Viola01 algorithms
proposes three different kinds of Haar-like features. The two-feature Figure 11a is the sum of pixels
constructing a diagonal or vertical edge in the, currently searched, rectangular shaped region. If
one box should fit, where two corresponding white boxes where needed to fill the whole rectangle;
you have a three-feature Figure 11b. The last picture is the four-feature Figure 11c which contains
boxes found on the diagonal in a rectangle fitting four boxes. Note that there are also permutations
of all the cases of Haar-like features, e.g., the two-feature could switch positions of its boxes, making
another Haar-like feature.

Figure 12: Decision tree constructed of Haar-like features

The decision tree, seen in Figure 12, is constructed when the original image is traversed. While
traversing, the cascade algorithm will also check if all the requirements are meet in the sub-decision
tree. Checking the requirements will be done for every sub-rectangle in the image. If some sub-
rectangle should not meet the Haar-like feature requirements, it will be discarded, and the algorithm
will cancel the construction of that particular decision sub-tree and move to the next sub-rectangle.

24 4 FEATURE EXTRACTION

Canceling the search for Haar-like features of uninteresting parts of the original image, will in-
crease the speed for building and traversing the decision-tree tremendously; this is the cascading
part of the algorithm. The decision-tree is both constructed, and traversed when looking for a
strong match of an object in the picture.

The method for actually using cascade classification, when detecting objects in an image, is
called HaarDetectObjects() in OpenCV. The cascading data is a pre-constructed training data, in
the form of a decision-tree, contained in a xml [3] file. The HaarDetectObjects() will return a list
of detected objects. If no object is found, previous mentioned method returns an empty list. Each
object found is in the form of a tuple, (x, y, width, height). A tuple of this form is called a CvRect
in OpenCV, where the (x, y) variables is the left upper most corner of the rectangle of size (width,
height). In other words, each rectangle in the list returned by the HaarDetectObjects() method will
be a rectangle which completely surrounds the detected object.

Cascade Classification Results

This method works particular well on images with good light conditions, equalized histogram values,
and if the image do not have too much noise. However, the OpenCV implementation of the Viola01
algorithm is computationally heavy. Running this algorithm on a live feed from a camera on every
frame retrieved will put a lot of stress on the CPU. Therefore, it is not optimal to run Haar
cascading as a standalone tracking algorithm. There are better alternative solutions which we will
discuss later in the report. Using Haar cascading for detection of objects followed by performing
the actual tracking with another tracking algorithm, is a better solution for faster tracking. The
next part of this section will give an example of an algorithm for tracking a head.

Figure 13: Found head using Haar cascading

To be able to track a human head, we propose an algorithm which first scans the image, looking
for a head using Haar cascading. When a particular head is found, using HaarDetectObjects(),
followed by generating an arbitrary amount of points to be tracked, using GoodFeaturesToTrack()
along with FindCornerSubPix(). The algorithm has now located the head, and determined a set of
points suitable for further tracking.

25 4 FEATURE EXTRACTION

The final stage is to actually start tracking the set of points. Using Lucas-Kanade, a very robust
optical flow tracking algorithm, which will give very accurate tracking results. Note that even
though Lucas-Kanade is really good for solving this particular tracking problem, the tracking will
fail miserably if the object is to be blocked or moving too fast. Previously mentioned limitations
will have to be taken into account when developing reliable tracking algorithms.

This section was dedicated as an introduction for good features extraction, suitable for recog-
nizing specific objects. There are other methods for accomplishing this task. The next section will
be about how to extract features, comparing the key points, and finding similarities with methods
other than Haar-like features.

4.5 SURF

In the field of computer-visualization there has been extensive research for finding specific robust
features in images suitable for recognizing a certain object in a picture. A number of algorithms
has been proposed, but the two most widely used are: Speed up robust feature (SURF)[12], and
Scale-invariant feature transform (SIFT)[40]. They are both used for describing, detecting, and
tracking a specific object.

A high-level description of the steps taken by SURF is to first extract feature points from the
original image. The extracted features are described, and can later be matched with points ex-
tracted from another picture; where search for a potential match between the points will be made,
and determine which point corresponds to which. The two most important features of the SURF
algorithm, are the following:

Interest points extraction
The detector is the entity for extracting certain interest points, key points. This detector
extracts data from the hessian-matrix [38], using second order Gaussian derivatives. The most
important property for accurate, and robust feature-extraction is repeatability. The points of
interest should withstand noise in the image, changes in illumination, as well as coping with
perspective changes between the images to be compared.

Description
The image will be divided into smaller quadratic-shaped regions. The set of interests points
within each search region will then be described. The descriptor should withstand the prop-
erties mentioned when extracting features as well as, having a very small amount of false
positive detections, when matching the key points.

A smaller part of the image is represented as a two dimensional hessian-matrix. The matrix is a
definition of the curve, derived from a second-order derivate, of that particular image region. The
hessian-detector for the key point extraction will be derived from the hessian matrix:

26 4 FEATURE EXTRACTION

H(x, σ) =

[
Dxx(x, σ) Dxy(x, σ)
Dxy(x, σ) Dyy(x, σ)

]
,

where H is the hessian matrix for the variable x, which is a (x, y) coordinate in the image where
the key point extraction will be executed. The scaling σ, and the location of the key point is
calculated using Gaussian derivatives of the second order, D. The original image is converted to an
integral image, and the calculations are executed over this image. Integral images are used for speed
optimizations when executing the key point extraction phase. Gaussian derivatives can also be used
for noise reduction, and constructing scale spaces, which can be used for restoration of images[50].

The calculation of the SURF descriptor is done in two phases. First, the direction for all the sets
of interest points is calculated. All the sets are then divided into smaller squares. Secondly, the x, y
direction for each point within a square is calculated and summed; the value from the summation
is the descriptor. Below are illustrations and explanation of both phases:

(a) Key points within
the image, divided into
circular shaped sets

(b) Circle containing key
points

Figure 14: Illustration of phase one of the descriptor calculation

All the extracted key points from the image are divided into sets of circles, Figure 14a. The
orientation for each interest point incorporated within the circle is going to be calculated, using
Haar-wavelets[24], as illustrated by Figure 14b.

(a) Search window
traversing a set of
interest points

(b) Direction vector for
the set of interest points

Figure 15: Illustration of phase one of the descriptor calculations continued

27 4 FEATURE EXTRACTION

The result from this calculation is a vector of a certain direction, for that particular key point.
A quadratic orientation window, Figure 15a , moves across the circle, adding all the directions from
each point, and calculates the overall orientation of the set; illustrated in Figure 15b. This vector
is later used for satisfying orientation invariance of all the extracted key points. The second, and
final stage of the SURF algorithm is to describe the found interest points.

Figure 16: Illustration of phase two of the descriptor calculation

All the sets of key points are divided into smaller squares, and each square is in itself divided
into even smaller squares as shown in Figure 16. The x, y direction is calculated for each point
within a square for a particular interest point, using Haar-wavelets a second time. The formula for
the calculation of the descriptor is:

descriptor = (
∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|),

where d is the Haar-wavelet value for the x- or y- axis.
The descriptor can later be used for matching key points extracted from a template, with interest
points selected from another image.

Extracting key points in OpenCV is really straightforward, using the method ExtractSURF().
The method takes four arguments: image, mask, storage, params. The features are extracted using
the image, and the mask argument. The image argument declares where to extract key points, and
the mask is an optional image which determines in what area of the original picture or what pixels
you are interested in. Memory is a cvMemStorage class, and is used for temporary storage of the
calculations when executing the SURF algorithm. Finally, the params argument is a cvSURFParams
class in the form of a tuple containing four elements: extended, hessianThreshold, nOctaves, and
nOctaveLayers. The extended variable determines the size of the descriptor; zero implies that the
size is 64 elements, and one implies a size of 128 elements. The threshold is used for determining
which extracted key points should be included or discarded. The last two arguments affect the
underlying image traversing for the SURF algorithm. The nOctaveLayers variable determines how
many pyramid layers each octave of the original image will be constructed upon, where the number
of octaves is the size of the filter for each layer. If the latter variable is set to one, the scaling is
unchanged. A value of two would declare that each layer would be twice as big, and the value three
would declare another duplication. This method will return a tuple containing a list of key points,
and another list of descriptors, extracted from the provided image.

28 5 TRACKING

SURF Results

SURF offers reliable results when trying to find interest points in a template image, search for
similar points within another image, and finally match them. The algorithm is really robust against:
noise, variations of brightness in the image, rotation, and different incidents of the tracked object.
These mentioned qualities make the SURF algorithm a very reliable, and vigorous object detection
technique. However, when traversing a live stream of images from a Kinect device or web-camera,
executing the SURF algorithm on every frame is not sustainable. The CPU-load will be to great
and the output image feed will lag. Instead use the algorithm when the task tries to detect or
rediscovery a known object.

Figure 17: Key point matching using SURF

In Figure 17 key points using SURF have been extracted from the template, the right upper
most picture, and matched with key points in a live feed image. The green lines is an indication
of a match between the interests points. There are also extracted key points where the algorithm
could not find a match, which are represented by the red crosses.

5 Tracking

Tracking an object is a very vague and arbitrary abstraction of the actual work being performed of
collecting data from an object in motion. A big challenge when tracking objects is for the applica-
tion to determine somehow that the correct object is being tracked at all times. Another obstacle
is to find unambiguity in the detected patterns. Conditions vary from scene to scene, and finding
good patterns is challenging. The final stage for a tracking algorithm is to analyze and draw conclu-
sions of the set of collected data. Analyzing images in various ways is a resource-demanding task.
Efficiency when developing accurate tracking algorithms is a high concern. Depending on how and
for what purpose the tracking algorithm is developed, a compromise between tracking accuracy and
speed has to be made.

29 5 TRACKING

The application has to be able to determine a shape with high precision and unambiguity
if a computer should be able to distinguish one object from another in a picture. To do this,
certain properties specific to the object have to be highlighted and interpreted. There are many
possible ways to accomplish this: using various filters, edge detection algorithms, optical flow, and
segmentation techniques. There is a difference between the ability to detect, and track an object’s
movement. For the purpose of solving the tracking (an arbitrary object problem), two sub-categories
of tracking was proposed by us; object detection and motion tracking. The following sections will
first be about object detection, followed by motion tracking, and finally Optical flow.

Object Detection

Object detection is the process of looking at patterns and distinct features of an object in an effort
to recognize which object7 it is and what object to be tracked in the scene. Different techniques for
distinguishing objects from one and other was discussed in the data processing section. Using one
or more of those methods, the rediscovery of the object of interest is the actual object detection.
By doing the rediscovery continuously for every frame, the system will track the object. A major
problem is to make certain that the correct object is tracked by the system at all times. That is
why, it is of utter importance to filter out the things you do not want the system to detect, and
enhance features for the object you are interested of, for easier discovery of the tracked object. The
actual analyze of the tracked objects movement will be the second sub category of tracking, motion
tracking.

5.1 Template Matching

To find an object in an image and track it by looking at the similarities of a smaller part of the
image is the basic principle in template matching. A template is a region of interest (ROI), in
Figure 18 it is marked with the green box. There are different proposed approaches to implement
template matching[13][36], and this section will address the approach implemented in OpenCV. The
algorithm traverses the image to find the object in question, and looks for matches that has similar
properties with respect to the template, the small picture to the right in Figure 18. If the object is
present in the picture, the algorithm returns a match.

The different methods for determining a template match in OpenCV are: squared difference,
correlation matching, and correlation coefficient matching. The definition of the squared equation
difference is:

G(x, y) =
∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))2,

followed by correlation matching:

7Refers to shape, depth, color, and other properties in this context, not the actual awareness of what type of
object it is in the real world.

30 5 TRACKING

G(x, y) =
∑
x′,y′

(T (x′, y′) · I(x+ x′, y + y′)),

where T is the template image, and I is the original image where you want to find matches using
T . Let r ∈ Region(R), x′ = 0 . . . w − 1 and y′ = 0 . . . h − 1, note that the summation applies
∀(x, y) ∈ r, where w is the width and h is the height.

Invoking template matching is done by calling the method MatchTemplate(). The first argument
of the method is the image where template matching should be applied followed by a template image.
The next argument is the result image, where the programmer wants to put the resulting matches
in. Which template matching method to be used is determined by the last required argument. The
matching regions can be extracted using the method MinMaxLoc(), which will return the global
extreme values found in the image. The min/max value returned will be the coordinate for the left
upper most corner where the object in the template matched with the original image.

Figure 18: Template extracted from the original image

Template Matching Results

Tracking an object using template matching will result in rather precise localizations of that object.
However, to only use this method when tracking arbitrary objects is really inefficient since template
matching is too computationally heavy. The algorithm should be used for updating the location,
or searching for an already known object and not used as a standalone tracking algorithm. The
update or search could be performed if the tracked object can not be found at the moment. The
object may be blocked in the image, temporarily exited the image, or there exists a template of the
interesting object to be found. The algorithm begins by traversing the image, making matches for
specific regions in the image, and finally compare the results, which puts a lot of stress on the CPU.
However, there are a few ways to reduce the number of calculations needed and still get strong
matches.

31 5 TRACKING

There is always noise in the image and when motion tracking is being performed, data8 from
the image can be discarded without sacrificing accuracy. To accomplish this, down sampling9 is
applied. Down sampling both the image being searched and the template, may decrease the number
of calculations drastically when applying template matching or any other tracking algorithm.

Another possible speed improvement is to store the region where the strongest match was last
found and start searching in that area. Even if the tracked object is moving, the difference in
position from frame to frame tends to vary little. Therefore, when looking for the object in a new
frame, it is preferable to start looking in the region where the object was located in the previous
frame. There is a great chance that the object has not moved, or moved very little, since the last
frame and a match is found right away. By also constructing the tracking algorithm to sample a few
frames continuously and not traverse every frame will increase the speed of the template matching
even further. This approach especially a good practice when tracking objects with low velocity.

Using the template matching method provided by the OpenCV library, and displaying just the
RGB-data acquired from the Microsoft Kinect, the CPU10 load on both the cores was around 50%.
Doing the same test as previously mentioned, but also using PyrDown(), which is a down sampling
function in OpenCV, the load on both cores was dropped to roughly 25% each.

5.2 Motion Templates

An interesting aspect of motion capturing is the possibility to recognize patterns in movements, and
gestures. These patterns can later be used to enhance human computer interaction by triggering
various events within an application when a particular gesture is recognized. To be able to accom-
plish this feat, the movement in the video stream has to be segmented. There has been a variety
of suggestions for segmenting motions[56][44][14], and this section will look at one in particular,
the Bradski00[16] algorithm. This algorithm relies on silhouettes of the object in motion that, for
example, may be extracted using back propagation or dynamically learn what is the
background/foreground in the video[37].

(a) Static person (b) Arms moving up-
wards

Figure 19: Motion history

8Data in this context is the sum of all pixels in the image.
9In this context down sampling is the process of reducing the amount of data in the image.

10Intel(R) Core(TM)2 Duo CPU P8600 @2.40GHz, on a Debian GNU/Linux unstable (sid) system.

32 5 TRACKING

Bradski00 starts of by analyzing if there is movement in the video feed by looking at the differ-
ence between the previous, and the current frame. If there is a movement, the current silhouette
brightness intensity is maximized, and all the previous silhouettes will be slightly faded, Figure 19b.
Noise elimination is performed by applying dilation 3.3.3 on all the retrieved image silhouettes to
make them as distinct as possible.

The retrieval of image silhouettes will proceed for a given time interval; by which a motion
history image (MHI) is constructed. This image contains all the image silhouettes, of the object of
interest from time t to ti, and will later be used for describing the motion during that time interval.

Figure 20: Global gradient orientation

To be able to tell the difference between motions which are very similar but moves in different
directions, local, and global orientations are calculated. The left most picture in Figure 20, is a
smaller part of the acquired MHI, with no movement at time t. Looking at the next frame fetched
from the camera at time t + 1, the tracked object has moved diagonally. To be able to calculate
the direction of the movement, motion gradients are used. Bradski00 proposes the use of a Sobel-
filter 3.3.2 in order to calculate the orientation on the x- and y-axis for each pixel in every smaller
square of the MHI:

G(x, y) = arctan
Sy(x, y)

Sx(x, y)
,

where G is the orientation of the global gradient for x, y, during a given time interval ti. S is the
Sobel-filter applied on the x, y axis ∀pixels within the silhouette.

Recognizing a specific pattern is done by constructing a motion mask while traversing the MHI;
starting from the current silhouette the algorithm iterates back to the first silhouette within a given
time interval. All the found silhouettes will be merged, Figure 21b, creating a motion mask which
will be used when trying to recognize the motion. The silhouette movement in Figure 21, is an
arc-shaped motion. When a movement in the video feed is discovered, and a positive match of the
newly created motion mask with the already known arc-shaped motion mask is found a recognized
motion is implied.

33 5 TRACKING

(a) Smaller part of a MHI (b) Motion mask retrieved
from the MHI

Figure 21: Motion mask for gesture recognition

To construct the MHI the OpenCV method UpdateMotionHistory() is used. This method takes
four arguments: silhouette, mhi, timestamp, and duration. The first argument is a picture containing
the silhouette of the object of interest. Examples of how to extract silhouettes was given in the
introduction of this section. The next argument, mhi, is an image used for the construction of the
motion history image. The interval for the actual MHI data construction is determined by the last
two arguments, where the timestamp is the initial time of the MHI construction, and the duration
is for how long the construction should take place.

The orientation of the motion is calculated using CalcMotionGradient(), which takes six argu-
ments: mhi, mask, orientation, delta1, delta2, and apertureSize. The first argument is the MHI
retrieved from the UpdateMotionHistory() calculations. The mask is an image or matrix declaring
in which part of the MHI the method should calculate the motion gradient. The gradient data is
stored in the image argument orientation. The duration of the calculated motion is determined
by the delta1, and delta2 arguments: where the first one declares the maximum duration, and the
latter the minimum duration. The last argument determines which size of the aperture window will
be used when traversing the motion history image. What the aperture window is, and the problems
with it will be brought up to discussion in Section 5.8.

The overall movement of the MHI is retrieved by the CalcGlobalOrientation() method, which
takes five arguments: orientation, mask, mhi, timestamp, and duration. The orientation, and the
mask argument is retrieved from the execution of the CalcMotionGradient() method. The mhi is
calculated by UpdateMotionHistory(), where the timestamp, and duration determines for which
time interval the global orientation calculations should be executed.

Motion Templates Results

Motion templates is not only suitable for recognizing motions, it can also be used very effectively
when tracking a human. To accomplish this feat a tracking system extracts silhouettes, creates a
motion history image, and calculates the orientation of the human within the MHI. As mentioned
earlier the CalcGlobalOrientation() method returns the overall movement of the silhouettes.

34 5 TRACKING

The returned orientation could in this case be used to track the overall movement of the tracked
human, Figure 22. The combination of the orientation along with the depth data retrieved from
the Kinect will provide useful data where the tracked person is located together with its movement.
Segmenting and tracking specific parts of the human may be accomplished by calculating motion
gradients for that particular region where the interesting part is located. The location of the hand for
example can be found using template matching 5.1 or SURF 4.5. One major downside by tracking
an object of interest in a MHI is if the tracked object should enter the boundaries of another moving
silhouette, the tracking will fail even if the object of interest is in front of the moving silhouette.
This is due to the fact that local orientations can not be calculated inside another silhouette.

An implementation of idling in a motion tracking system can be accomplished by periodically
look for changes in the image feed with the help of motion history images. If a movement should
be detected, the system can generate tracking points within the object edges. The points could be
generated using GoodFeaturesToTrack() 4.3, and all those points should be tracked using Lucas-
Kanade 5.8.

Figure 22: Demonstration of a MHI of a moving human

5.3 Moments

After various filtering and shape detection techniques are applied, the ability to track by looking at
the shape of an object is useful. Using moments is one possible way to accomplish this. In physics
moment is often the force an object has when rotating around an axis[29]. However, in this section
moments is a way to calculate the gravitational pull of an arbitrary object, Figure 23. If the object
in question would have a circular shape, the central gravitational pull would be right in the middle
of the circle. The gravitational pull on the x-axis would be the edge farthest to the left and the
gravitational pull on the y-axis would be the upper most edge. Note that the circle is a set of points,
and is limited to a finite area.

35 5 TRACKING

Figure 23: Moments on circle

The mathematical formula for calculating the center of gravitation is:

µk = E[(X − µ)k],

where E[X] or µ is the expected central gravitational pull, X is a continuous random variable of
the kth order[47]. In the OpenCV, another way of calculating the gravitational pull towards the
center of an object is proposed:

Mx_order,y_order =
∑
x,y

(I(x, y) · (x− xc))x_order · (y − yc)y_order,

where, I is the original image, (x, y) the pixel coordinates. xc and yc is defined as follows:

xc =
Sfirst_order_x

Szeroth_order
, yc =

Sfirst_order_y

Szeroth_order
.

The moments’ algorithm needs to find all the extreme values11 in the shape. This is performed by
first looking at spatial moments (S) of the first order on the x-axis; which is the xc value. The value
returned of this calculation is the left most extreme value, i.e. the edge farthest to the left of the
object. Doing the exact same thing by looking at spatial moments of the first order on the y-axis
instead of the x-axis, will bring the minimum location of the extreme values in the shape, with
respect to the y-axis; the yc argument in the above formula. To be able to calculate the center of
gravity in the shape, divide spatial moment of the first order with the spatial moment of the zeroth
moment, for both the x-axis and the y-axis.

Moments Results

Here is another example12 of tracking an arbitrary object using the depth data, Figure 24a, from
the Microsoft Kinect. Clipping is applied to the depth as shown in Figure 24b. Since moments
works with respect to shape, adding an edge detection filter algorithm, like Laplace, will provide
the data of the outer contours of the object. Getting the spatial moment for x- and y-axis is done
by calling GetSpatialMoment() from the OpenCV library.

11Extreme values in this context is the strongest gravitational pull using moments on an object with a specific
shape.

12The previous example were described in Section 4.3

36 5 TRACKING

This method takes three arguments: moments, x_order, y_order. The computation of the moments
argument is executed by the method Moments(), which takes the image as an argument and has an
optional binary argument which determines how the pixels should behave.
Assigning the x_order = 1 and y_order = 0, will give you the gravitational pull for the x-axis of
the object. The same goes for the y-axis, with the exception that, x_order = 0 and y_order = 1
in this case.

(a) No clipping on the hand (b) Hand with clipping

Figure 24: Depth images

To get the actual coordinates in the picture, divide moment axis and the central gravitational
pull. The formula to retrieve the central coordinate is defined as:

coordinate = (
mx

c
,
my

c
),

where mi is the moment of a certain axis and c is the central moment of the shape. Getting the
central moment is achieved by calling GetCentralMoment(); which takes the same arguments as
GetSpatialMoment(). The values returned are the extreme values for the x-, y- axis, and central
gravitational pull of the shape. The returned coordinate, from the above formula, is the center
coordinate in the image where the gravitational pull is the strongest. For the interested reader,
an improved version of calculating moments in images was proposed by Jan Flusser and Tomás
Suk[30].

Tracking multiple objects can be done by using a list of all the regions of interest and previous
center coordinates for each object. The list of object regions needs to be updated for every frame
by subtracting the difference between current center coordinate and the previous one, followed by
updating the positions of the regions for every object in the list of regions. This approach makes
the assumption that the multiple objects being tracked never collide or get too close to each other.
If two tracked objects are to close, and the gravitational pull is stronger for one object than the
other, the moment tracking algorithm will fail. The object with the strongest pull will attract the
other tracked center coordinate which will result in the loss of tracking capability of the other object.

37 5 TRACKING

There are various ways to solve this, and the by far easiest one, would be to use template matching
continuously for updating the tracked objects positions.

5.4 Motion Tracking

Since tracking is just a form of rediscovering the correct object for every frame, and distinguish
the object from other objects. The question is how should the motion be analyzed? The actual
data acquired from the object-detection step is: the current-, and previous-position. Analyzing
and drawing conclusions of that retrieved data is called motion-tracking. There are several motion-
tracking algorithms. This section will essentially discuss the different optical flow techniques. The
main advantage of using these algorithms for tracking purposes is first of all speed, as well as
calculations of velocity, and the direction of object in motion. The programmer can use the newly
acquired data when developing tracking algorithms which will try to accurately approximate the
position of the tracked object even though, for example, the object is blocked. Discussion of the
approach will be brought up in the optical flow section.

5.5 Mean-Shift

Mean-shift is a tracking algorithm that utilizes weight distribution in an image. It does so by
analyzing clusters of weighted pixels and finds the most probable area in the image where the desired
object currently exist. This algorithm requires a weighted input image, and is very efficient to track
objects that stands out compared to the scene. For the project, the histogram back-projection,
see 3.3.5, has been used. It creates a back-projection according to the objects hue-histogram.

The RGB-camera by itself does not provide with the weighted pixel matrix. The transformation
from RGB to a weighted image can be done in different ways for example histogram back projection.
In this case it is done by extracting a local histogram of the desired object. By using the histogram
back-projection filter to generate a weighted image, the mean-shift algorithm continues were the
histogram back projection algorithm finishes. By traversing through the new image and finds the
object, based on the mass-center.

The algorithm used to measure the mass-center is called Parzen window [26], and it uses a
specified size window and searches every frame for the new mass-center within the window and
moves the window to get the mass-center in the center of the window, then it does the search again
until the the maximum number of iteration is fulfilled or the shift finds the same mass-center again.

In OpenCV the mean shift algorithm is already implemented and is called by MeanShift(), it
has three inputs, WImage, Window, Criteria. Were WImage is the weighted image, Window is the
size and initial position, and Criteria has already been explained in refined accuracy 4.2.

The mean-shift algorithm tracks fluently and is relatively fast to compute, it can be used with
confidence to track in situations where the objects is not expected to move in the depth-axis. This
could for example be used in scenarios where there is a top-view camera tracking objects and
analyzing movement through a course. Though in most cases and during this project tracking
in three dimensions is the preferred approach. Fortunately there is a further development of the
Mean-shift algorithm that is called Cam-shift algorithm.

38 5 TRACKING

5.5.1 Cam-Shift

The cam-shift algorithm uses both the histogram back-projection and the mean-shift algorithm to
track an object through color. CAM stands for continuous adaptive mean and it has one more step
that is activated after the mean-shift algorithm discovers the mass-center of the weight-distributed
image. The cam-shift resizes the search window according to the total weight of the local area[9][15].
This allows full 3D tracking of an object in an efficient way. In Figure 25b the cam-shift algorithm
is utilized by first extracting the local histogram from the helicopter’s blue led-light. When in flight
the cam-shift has no problem tracking the blue light even when the helicopter is changing course
quickly.

(a) Back-projection (b) Cam-shift

Figure 25: Cam-shift in action

Cam-Shift Results

Though it is important to make sure the hue-histogram and histogram back-projection has a high
quality for the tracking to work. We propose to use this algorithm as a secondary check-up that
compares the tracking result with the first order tracking every ones in a while to make sure the
tracking stays in check. A problem that can occur with other tracking algorithms is that the tracking
loses focus and starts to follow a path on the object e.g., tracking the hand can result in tracking
the wrist, to the elbow and so on. The cam-shift algorithm can make sure that the tracking stays
on the hand if the operator wears a long sleeve shirt. But all in all it is a good algorithm that is
very cost-efficient and is sensitive to dynamic changes, especially different light sources.

5.6 Optical Flow

It is a fair chance that some properties of an object is distorted in some manner when that object
is tracked: the lighting conditions can change, the tracked object can be blocked of another object,
and the object may temporally exit the image at a certain time. All these scenarios have to be taken
into account when developing tracking algorithms. The need of a good way to approximate motion,
and relative position for the tracked object arises; one solution is to use optical flow. This technique
calculates the velocity, and direction of an object in motion. Using the acquired information from
optical flow algorithms it is possible to make rather accurate guesses of the objects position ’some
time ahead’, even if the object is not present in the actual frame given.

39 5 TRACKING

Various optical flow algorithms will be brought up to discussion in this section. They will be
explained, analyzed, and conclusions of when to use them will be proposed. Some of the algorithms
are very good at detecting a motion, and start tracking the object. While others are exceptionally
fast, and accurate when tracking a large set of points simultaneously.

5.7 Block Matching

This subsection present yet another tracking algorithm that, among other things, also is used for
compressing video formats such as MPEG and H.236. The Block Matching algorithm is a very
straight forward method for tracking objects in a motion picture. It starts of by dividing each frame
into disjoint blocks with equal size, Figure 26a. For each block in the current frame the algorithm
searches within a predefined search area around each corresponding block in the previous frame in
order to find a candidate13 that has the best match with the block in the current frame, Figure 26b
and 26c. So in other words, each block in the current frame is ’shifted’ within the corresponding
search area of the previous frame in order to discover how the block has moved. Since the compar-
ison is done between pixel values this algorithm is sensitive to the aperture problem14. However,
this can be solved by making the blocks larger.

The most common function for computing the cost of each pixel is Mean Absolute Difference
(MAD)[33] which is expressed as follows:

MAD =
1

W ∗H

W∑
i=1

H∑
j=1

|Cij −Rij |,

where W is the block width and H is the block height, Cij and Rij represent the compared pixels
of the block in the current frame and a candidate block in previous frame.

(a) This is a series of frames
that has been divided into
blocks

(b) Each block is matched
against the previous frame in
order to find its candidate
block

(c) The block is ’shifted’
across a searching area to find
the best match

Figure 26: Illustration of Block Matching

13A candidate block is a block that potentially matches the block in the current frame.
14The aperture problem will be explained in Lucas-Kanade section.

40 5 TRACKING

Full Search

This is the most computationally demanding search algorithm, but at the same time the most
accurate. It is a very straight forward brute force algorithm in the sense that it traverses the entire
search window, compares the block against all candidate blocks, and picks the one that has the
least divergence. But having large video feeds that has small changes between each frame makes
this algorithm obsolete.

Three Step Search

Instead of traversing the entire search area like the full search method does, the search for a block
match is divided into three steps, thus the name. First off, the size of the search area is set so that
it holds up to 15x15 candidate blocks. Then nine search points15 are placed out. One in the middle
with eight surrounding points such that it forms a square with an area of 9x9 blocks (the red points
in the Figure 27). Then the algorithm executes the first step of searching; beginning with the point
in the middle and continues until all nine search points are investigated. If the middle point had
the best match the algorithm ends and the motion of the block is found. Otherwise, if any other
point has a better match, that one will be set as the new center point, where the next search will
start, and eight new search points will be placed out around it, but this time with an area of 5x5
block (the green points in the Figure 27). The second searching step is commenced and it operates
in the same way as the first one. Again, when the best match is found, that one will be the new
center and eight new points will appear, but this time adjacent to it (the blue points in Figure 27).
The final search step starts and the point with the best match shows where to the block has been
moved and a new center point will not be declared. This method is not as accurate as the full search
algorithm but the worst case scenario for this algorithm is 25 block searches instead of 225 with a
search area of 15x15 candidate blocks. In Figure 27 the three different colors illustrates each step
and the arrows point out where each step found the best match[11][33].

Figure 27: The arrow shows how the algorithm finds the best match and continues to the next step,
this image illustrates three steps until a match is found

15Candidate blocks that are to be investigated.

41 5 TRACKING

5.8 Lucas-Kanade

In the tracking field it is often very convenient to be able to track arbitrary amount of points,
independently of each other. Tracking in this way will increase the possibilities to track objects
tremendously. A system providing this feature could be used for generating tracking points in a
human face and capture facial expressions. The Lucas-Kanade(LK)[41] algorithm has the ability to
provide with previous mentioned qualities. The algorithm is a fast optical flow algorithm proposed
as early as 1981. The algorithm has the ability to track large set of points in an image, without
losing its ability to track each point independently of each other accurately. Image transformations
like: scaling, rotation, and shearing has little effect on the overall performance of the algorithm.
However, Lucas-Kanade will fail to track a specific point in the image if the object being tracked is:
moving too fast, or the lighting conditions in the image changes drastically. Why this is the case
will later be explained when explaining the algorithm more thoroughly.
To explain how the Lucas-Kanade algorithm works three prerequisites has to be stated, which LK
is heavily dependent on[22]:

Brightness
The lightning conditions, from the previous frame to the current frame, should preferable
not change at all. If the brightness should change, it has to be continuously smaller changes
between the images.

Sustained movement
For each point being tracked, their overall velocity should be low. Note that this assumption
is not just applied to the point itself, but also for the neighboring points contained in the
window.

Velocity coherence
The overall velocity, and direction of the movement is coherent for the point being tracked
and its corresponding neighbors.

With the previous mentioned properties, of the image in mind, LK starts of by dividing the image
into smaller windows. Each separate window is a rectangular region in the initial image, where the
actual optical flow calculations are being executed. Dividing the image in this fashion will speed
up the calculations necessary for accurate results. However, if the window size is too small, this
approach leads to another problem, the aperture problem.

(a) (b)

Figure 28: Illustration of the aperture problem

42 5 TRACKING

When the window is to small it is very hard, or even impossible to determine the flow of all the
pixels within the edges of a specific window. Figure 28 is an example of the aperture problem taking
affect. The gray box in Figure 28a is a smaller part of the image being traversed, where the pixels
has the same intensity. The green box in Figure 28a is the search window traversing the original
image trying to determine which direction the gray-box object is heading. Looking from the search
window perspective, the gray-box is moving from left to right. But this can not be claimed with
absolute certainty. It may be very well, as in this case, that the object is moving in a diagonal
motion from left to right. The search window is to small and it needs more information of the
pattern, which movement it is currently trying to determine. This phenomenon makes it unreliable
to apply too small window sizes, while trying to calculate accurate optical flow results, since the
algorithm simply has not enough data.

Figure 29: Image pyramid

One way to evade the aperture problem is to use image pyramids 29. Traversing each level of
the pyramid while executing the LK algorithm will decrease the incorrectness from the aperture
problem to nearly zero, without sacrificing accuracy when tracking an arbitrary point in the pic-
ture. Pyramids is often used as a method for down sampling [32]the original image for optimization
purposes; it can also be used for recognizing patters[42] in the image.

x

T (x)− I(x)
δ

I(x)T (x)

Figure 30: Calculate position of the black-dot

43 5 TRACKING

The next step is to traverse each window in the current image and check how well the current
position of the tracked object matches with the previous position. The optical flow is calculated by
matching the current position, of the point being tracked, with its previous position. The matching
is done by looking at the derivative for both image and compare the dislocation; in doing so solving
the registration problem. The problem is locating a point in space with sufficient accuracy over time.
The black dot, in the Figure 30, is the point being tracked. The point moves in space from the T (x)
to I(x) curve in one dimension. Both curves will be calculated with the following functions:

I ′(x) ≈ I(x+ δ)− I(x)
δ

,

=
T (x)− I(x)

δ

when,

δ ≈ T (x)− I(x)
I ′(x)

,

where I(x) is the derivative curve for the current position of the image, and T (x) is temporary
image, that is, the previous image with respect to I. I ′(x) is the optical flow calculated in 1D, ∀x
positions. Note that the calculations for each derivative comparison is done over time, using the
difference in space δ. The registration problem addresses the task of calculating the position of a
point over time.

CalcOpticalFlowLK(), and CalcOpticalFlowPyrLK(), are two methods implementing the Lucas-
Kanade algorithm. However, the second method is the preferable choice to use, since it traverses
the LK algorithm over each pyramid level. The reasons why to use pyramids were discussed earlier
in this section. The actual pyramid calculations is done by Bouguet00 [57].

The method CalcOpticalFlowPyrLK() takes ten arguments: prev, curr, prevPyr, currPyr, pre-
vFeatures, winSize, level, criteria, flags, and guesses. The first argument is the previous captured
image, and the curr argument is the current retrieved picture. The next two arguments are tempo-
rary variables used for calculating the pyramid images. The prevPyr is the previous image pyramid
and the currPyr is used for calculations of the current image pyramid. The prevFeatures argument,
is a list of all the points being tracked. Traversing the pyramid is declared by the winSize, and
the level arguments. Where the size of the search window is determined by the first one, and the
number of pyramid levels is assigned by the latter. Flags determines if pre-calculation of the image
pyramids should be used or not. The argument criteria specifies the maximum number of iterations,
and the accuracy of the LK algorithm. Finally, guessing the coordinates for all tracked points can
be done by assigning the last argument with a two dimensional array of coordinates.

The result, after executing the CalcOpticalFlowPyrLK() method, is a tuple of the form (cur-
rFeatures, status, track_error). Updated coordinates from the optical flow calculations for each
tracking point is stored in the list currFeatures. Each point returned has a status variable which
it is associated with. The status variable is represented as a binary integer of either the value one
or zero. If the value is one, the optical flow calculations for that particular point was completed
successfully. The status value will be zero if either the criteria could not be met or the optical flow
calculations failed for some other reason.

44 5 TRACKING

This indicates that filtering out points where the LK algorithm fails to determine the movement of
a specific point can be made by the status variable. The final variable, track_error, is the location
difference for each point between the current picture, and the previous one.

Lucas-Kanade Results

Tracking arbitrary amount of points simultaneously works really well using CalcOpticalFlow-
PyrLK(). How the set of points are being generated depends on your specific domain. Two al-
ternatives for generation of points could be: using the mouse by clicking on specific parts in the
image, or the usage of the GoodFeaturesToTrack() method. While the GFTT method will return
points suitable for tracking, certain positions of the points may be inadequate to be used with LK.
This is due to the fact that higher position accuracy is needed. The possibility to refine the position
of the points is made by FindCornerSubPix().

(a) Initial position of the head (b) Moved the head slightly to the left

Figure 31: Real time tracking of a set of points using Lucas-Kanade

Even though the set of points have all the requirements necessary for solving the task of tracking,
the programmer also needs to take into consideration of what to do if the point is being blocked
by another object or the point is moving in such a speed that LK loses the ability to track that
point. There are two reasons for the loss of tracking capabilities of a point which has a to high
velocity. The first one is due to the aperture problem when a search window is too small. The
second problem is that the tracked point can end up outside the current pyramid level when the
LK algorithm is traversing it, resulting in a discarded tracking point.

45 6 RESULT

6 Result

This section summarize the results and general observations encountered during the project. Span-
ning from multi-library issues to the primary difference between detection and tracking algorithms.
Many of the more specific results discovered has no fundamental proof and has instead been added
in discussion where it has been thoroughly motivated.

It was decided to develop the application on the three platforms: Windows 7, OSX, and
Gnu/Linux. Even though there were no problems to install the drivers and libraries on Gnu/Linux
there were some issues on Window 7 and OSX. The first problem encountered, at the start of the
project, was to get Python and the libraries: OpenCV, Libfreenect, and numPy, to work together
on two of the platforms OSX, and Windows 7. This problem demanded its resources and the issues
were not completely solved until the first quarter of the project had passed. The reason for this was
complicated operations with inconclusive documentation. Most of the problems came with Win-
dows 7, where there were issues to get the Kinect drivers to work. Even though we created a new
document[25] that describes each step of the process there are probably still scenarios uncovered.
On OSX there were a few problems to connect the libraries with the right version of Python, but
in the end it was not an issue after all. Unfortunately, these problems delayed the progress of the
project with approximately two to three weeks.

However, when the libraries were up and running, OpenCV proved to be invaluable to the
progress of the project. It’s overwhelming collection of image processing algorithms allowed us
to analyze and compare a variety of different filter-, detection-, and tracking algorithms. All the
algorithms provided were in the end implemented in the application, and a continuous trend was
discovered. Tracking and detection is first and foremost, noise-, and scene-dependent, which means
that all the algorithms tested have prerequisite conditions for optimal performance. Less noise is
better, unfortunately with the equipment used, noise was inevitable. Different filter-algorithms can
cover up the noise in different ways, but in the process data will be lost. Therefore, the critical part
is to choose the right filter for the right tracking- or detection-algorithm. In Section 7, different
combinations of filter, detection-, and tracking-algorithms are presented as suggestions for different
scenarios. These suggestions are based on observations only, and there is no scientific proof to back
them up them.

It is important to know that there is a difference between detecting objects and motion tracking.
All the detection-algorithms i.e., corner detection, GFTT, SURF, and template matching, can track
objects, however they are inefficient. That is why there are optical flow algorithms, which anticipates
where the objects should appear in the current frame, and searches the area until it finds the objects
in motion. Whereas detection algorithms searches through the whole frame in the stream regardless
of the position of the objects.
During the project it was discovered that a combination of algorithms could be used for emotional
capturing, with the use of a laptop and a webcam or Kinect. Unfortunately this was not achieved
completely, but an algorithm has been proposed A, which uses a combination of algorithms that has
been analyzed during the project. The proposed algorithm should be able to generate an arbitrary
number of points on a person’s face in order to capture expressions. The algorithm is hypothetical
and will be further discussed in Section 7. It has not yet been fully implemented and tested.

46 7 DISCUSSION

7 Discussion

Early in the project we realized that motion-tracking can be divided into three steps: filter, de-
tection, and tracking. We decided to investigate a collection of algorithms in each category with
different characteristics to identify preferred algorithms individually, and together in a daily envi-
ronment, that may contain multiple objects in different colors and shapes. Together with variation
in light quality with single and multiple light-sources; and investigate the effects on the algorithms
when objects move with different velocities.

When the research began we quickly realized that there are far too many algorithms constructed
for filtering and motion capture. The strategy was to identify the most common algorithms that
are used in other tracking projects. The average filter, Section 3.3.6, was implemented and its
purpose was to remove noise, the same as smoothing, Section 3.3.1. After the first prototype, it was
discovered that in order to get it to work in real-time, the process needed to be pipelined, which we
realized that we did not have the time to do. The goal was to implement and compare various filter-,
detection-, and tracking-algorithms. These reasons resulted in the convenient decision to only use
algorithms that has already been implemented in a library. Because it is a fast way to implement
a prototype, which has been used for analysis and evaluation of the algorithms capabilities.

The primary consequence of working with low-fidelity camera equipment is a larger amount of
noise. The problem with noise is that the data is not fully accurate, and there are no algorithms
that can identify the difference between noise and correct data. Though, there are noise-reducing
filters that deals with the problem in different ways, we have selected three algorithms: smooth,
dilate, and erode. Smooth-filters calculate a new pixel value by considering its surrounding area.
this creates a blur-effect on the entire image that makes it noise free. Erode and dilate creates a
small window that traverses through the image and replaces the center value with the highest or
lowest value. This enhances the dark areas or the light areas in the image and at the same time
discards the noisy pixels in the image. We found that these three noise-removal algorithms has been
able to aid the tracking algorithms well in our project.

There is an uncertainty of the effects when noise-filters are used compared to e.g., edge-enhance
filter. No matter what happens to the rest of the image, the user can at least expect the edges
within the image to be enhanced. Noise reduction results in a blurred up image and the question
is what is preferred, noisy or blurry? It is worth noting that noise-filters are favorable as long as
the right one is picked depending on what tracking method is going to be used. In our case most of
the tracking algorithms are based on using contrast and edges. Of course it is a balance but there
are few scenarios were there are so much noise that it has been impossible to do the tracking in
a sensible way. Though, it should be mentioned that when the tracking is based on colors, to our
experience it does not matter if the image is blurred a little bit.

Edge detection filters are probably one of the best ways to aid the segmentation process. For
tracking, one of the most important part is to be able to distinguish the objects in the image
e.g., different parts of the body, especially hands. However, if the background is clean of edges, this
technique is good to get clear lines and get the exact shape of the whole body. Note, motion capture
focuses on capturing joints and rarely on shapes per se, but it is beneficial to start by excluding
everything that is of human shape.

47 7 DISCUSSION

Opposite to what we believed when we started this project, depth is a surprisingly small part
of the detection and tracking technology. There are very few techniques that utilize depth to its
potential that we know of. The reason for this is probably because the technology is very new
and there is still limited algorithms to detect specific three dimensional shapes. As mentioned in
the previous part, edge detection can be used to extract high precision shapes. It is worth noting
that depth extraction probably has an even higher precision as long as the object being detected
is the only object at the particular depth. Combining depth and edge detection would probably
complement each other. Because even if the scene contains a lot of objects, and the background
is messy. Clipping on a specific depth, with the help of an edge-detection algorithm, allows the
detection algorithm to ignore most of the uninteresting objects in the scene. We believe that using
the depth data has potential, perhaps even enough to detect objects by itself. To combine depth
together with modern color- or detection-algorithm is probably the next step for precision detection,
segmentation, and tracking of a specific object.

A major concern for tracking- and detection-algorithms is when objects can not be identified, it
ends up outside the frame, or is blocked behind another object. As soon as the objects disappear
one of the detection algorithms is activated e.g., template matching or SURF. We suggest a time-
dependent sequence of operations to rediscover the missing object. A point of probability can
be extracted by estimating the object acceleration, velocity, orientation, and direction before it
disappeared. The algorithm starts the search after it has created a local search-window. If the
object is not found through the iteration, the search-window expands. It expands until the whole
frame is covered in the local search-window. If the point of probability is estimated outside the
image-frame, the local search-area should be moved to the closest edge. This search method is used
because of its superior attribute in speed and performance optimization compared to searching the
whole frame from the start. This method should not be applied to the SURF-algorithm, because it
uses very different techniques to discover objects.

The focus when tracking people is often not to track the whole body and get the complete shape.
Instead, as mentioned above, the idea is to extract the position of the joints. By doing so, there
are no problem to get the interesting data, that is movement and position of the person, without
restricting tracking capabilities to a certain individual. This can be achieved by the application
OSCeleton, which utilizes OpenNI. The application is straight-forward and we recommend it for
experimenting. But to implement this yourself is rather complex. We suggests to use one of the
feature extraction techniques that has been reviewed in this report, preferably good features to track.
As explained, it is not that simple to identify where a knee is in an image with no reference. But
by placing multiple ’good feature’ points close to the knee, a relative position to the joint can be
extracted out of the group of points and by using LK, tracking can be achieved. This method works
as long as the joint is not too far away from the camera, because the pixel area can become too
small.

OpenNI is a library that has great possibilities. However, OpenNI can not be connected to a
camera device or Kinect if OpenCV already is in use. This problem can be solved by retrieving the
image-data via OpenNI and convert the data to an image format supported by OpenCV.

48 8 CONCLUSION

We wanted to combine these two libraries but did not because there is no simple way to convert
the raw-data from OpenNI to Images in OpenCV. We used OpenNI in a stand-alone application
called OSCeleton, to extract the joints in the human body making it easy to use for motion-capture.
In the application a 3D-scene together with objects and skeletons for every user was implemented.
The user controls the skeleton by body motion, and can interact with the virtual objects.

One of our goals was to investigate emotional capture, unfortunately, due to other priorities we
did not get the chance to implement such an algorithm in our application, but we did come up
with a proposed algorithm. Even though this algorithm is not tested in its complete form, every
part of the proposed algorithm consist of algorithms tested and evaluated in this report. Note, the
algorithm and the explanation is presented in Appendix A.

For further development the proposed algorithm should be implemented, investigated properly,
and integrated with skeleton tracking. Also hand tracking is also an important part of motion-
capture. There are various solutions to track fingers independently, but to get emotional-capture,
motion-capture, and tracking fingers to work together would be something to investigate in the
future.

8 Conclusion

The task was to analyze different motion tracking techniques using laptop systems. This report
starts by investigating different filters suitable for tracking algorithms. The investigated filters are:
Gaussian, mean, average, Sobel, Laplace, Canny, dilation, erosion, and histogram back-projection.
Various feature extraction techniques were analyzed: Harris corner detection, good features to
track, refined accuracy, cascade classification, and SURF. Finally, the report discusses the following
tracking algorithms: template matching, motion templates, moments, mean-shift, cam-shift, block-
matching, and Lucas-Kanade.

It has been concluded that in order to track an object, specific properties for the tracked object
should be enhanced. Image noise from the camera feed prevents optimal tracking performance.
Different conditions needs to be taken into consideration when choosing computer-visualization
algorithms, such as changes in illumination and disappearance of objects.

49 REFERENCES

References

[1] OpenCV Reference Manual, v2.2 edition, December 2010.

[2] Bsd 3 clause lisence. http://www.opensource.org/licenses/BSD-3-Clause, June 2012. Di-
rector of the Office of Technology Licensing of the University of California.

[3] Extensible markup language (xml) 1.0 (fifth edition). http://www.w3.org/TR/REC-xml, June
2012.

[4] Latex wikibook. http://upload.wikimedia.org/wikipedia/commons/2/2d/LaTeX.pdf, June
2012.

[5] Libfreenect. https://github.com/OpenKinect/libfreenect, June 2012.

[6] The mit license (mit). http://www.opensource.org/licenses/MIT, June 2012. Massachusetts
Institute of Technology.

[7] Numpy. http://numpy.scipy.org/, June 2012.

[8] Plantuml. http://plantuml.sourceforge.net/, June 2012.

[9] John G. Allen, Richard Y. D. Xu, and Jesse S. Jin. Object tracking using camshift algorithm
and multiple quantized feature spaces. In Proceedings of the Pan-Sydney area workshop on
Visual information processing, VIP ’05, pages 3–7, Darlinghurst, Australia, 2004. Australian
Computer Society, Inc.

[10] Lennart Andersson, Anders Grennberg, Torbjörn Hedberg, Reinhold Näslund, Lars-Erik Pers-
son, Björn von Sydow, and Inge Söderkvist. Linjär algebra med gometri, chapter 7. Studentlit-
teratur, Lund, 1999.

[11] Aroh Barjatya. Block matching algorithms for motion estimation. Technical report, Blekinge
Institute of Technology, IEEE, 2004.

[12] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
European Confeiefrence on Computer Vision, pages 404–417, 2006.

[13] Alexander C. Berg and Jitendra Malik. Geometric blur for template matching. Technical
report, Univeristy of California, Berkeley, 2001.

[14] Aaron F. Bobick, James W. Davis, and IEEE Computer Society. The recognition of human
movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23:257–267, 2001.

[15] Gary Bradski. Real time face and object tracking as a component of a perceptual user interface.
In Applications of Computer Vision, volume 4th, pages 214 –219. IEEE Workshop, October
1998.

[16] Gary Bradski and James Davis. Motion segmentation and pose recognition with motion history
gradients. In Machine Vision and Applications, pages 238–244, 2000.

http://www.opensource.org/licenses/BSD-3-Clause
http://www.w3.org/TR/REC-xml
http://upload.wikimedia.org/wikipedia/commons/2/2d/LaTeX.pdf
https://github.com/OpenKinect/libfreenect
http://www.opensource.org/licenses/MIT
http://numpy.scipy.org/
http://plantuml.sourceforge.net/

50 REFERENCES

[17] Gary Bradski and Adrian Kaehler. Learning OpenCV, chapter 13. O’Reilly Media, Inc., Se-
bastopol, CA, 2008.

[18] Gary Bradski and Adrian Kaehler. Learning OpenCV, pages 148–151. O’Reilly Media, Inc.,
Sebastopol, CA, 2008.

[19] Gary Bradski and Adrian Kaehler. Learning OpenCV, pages 151–153. O’Reilly Media, Inc.,
Sebastopol, CA, 2008.

[20] Gary Bradski and Adrian Kaehler. Learning OpenCV, pages 115–118. O’Reilly Media, Inc.,
Sebastopol, CA, 2008.

[21] Gary Bradski and Adrian Kaehler. Learning OpenCV, chapter 7. O’Reilly Media, Inc., Se-
bastopol, CA, 2008.

[22] Gary Bradski and Adrian Kaehler. Learning OpenCV, pages 323–334. O’Reilly Media, Inc.,
Sebastopol, CA, 2008.

[23] John Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-8(6):679 –698, nov. 1986.

[24] Phang Chang and Phang Piau. Simple procedure for the designation of haar wavelet matrices
for differential equations. In Proceedings of the International MultiConference of Engineers and
Computer Scientists, volume 2, 2008.

[25] Jens Christensen, Jonas Brandvik, and Oliver Carlsson. Kinect motion capture. https://
github.com/prebz/kinect-motion-capture, June 2012.

[26] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(5):603 –619, may 2002.

[27] Openkinect community. http://openkinect.org, June 2012.

[28] E. Roy Davies. Machine Vision, chapter 3. Elsevier Inc, 3rd edition, 2005.

[29] Lennart Ekbom, Stig Larsson, Lars Bergström, Uno Jönsson Alf Ölme, Sigvard Lillieborg, and
Thomas Krigsman. Tabeller och formler för NV- och TE-programmen, page 100. Författarna
och Liber AB, 2003.

[30] Jan Flusser and Tomás Suk. On the calculation of image moments. Technical report, Institute
of Information Theory and Automation Academy of Sciences of the Czech Republic, 1999.

[31] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Technical report, AT&T Labs, 1997.

[32] H. Greenspan, S. Belongie, R. Goodman, P. Perona, S. Rakshit, and C. H. Anderson. Overcom-
plete steerable pyramid filters and rotation invariance. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 222–228, 1994.

[33] Aglika Gyaourova, Chandrika Kamath, and Sen ching Cheung. Block matching for object
tracking. Technical report, Department of Computer Science, University of Nevada, Reno;
Center for Applied and Scientific Computing Lawrence Livermore National Laboratory, 2003.

https://github.com/prebz/kinect-motion-capture
https://github.com/prebz/kinect-motion-capture
http://openkinect.org

51 REFERENCES

[34] Chris Harris and Mike Stephens. A combined corner and edge detector. Technical report,
Plessey Research Roke Manor, United Kingdom, 1988.

[35] Free Software Foundation Inc. Gnu general public license. http://www.gnu.org/copyleft/
gpl.html, June 2012.

[36] Freâ Deâ Ric Jurie and Michel Dhome. Hyperplane approximation for template matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 996–1000, 2002.

[37] Robert Laganière. OpenCV 2 Computer Vision Application Programming Cookbook, pages
272–277. Packt Publishing, Birmingham and Mumbai, 2011.

[38] Ruan Lakemond, Clinton Fookes, and Sridha Sridharan. Affine adaptation of local image
features using the hessian matrix. In IEEE International Conference On Advanced Video and
Signal Based Surveillance, Geneoa, Italy, 2009.

[39] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid object
detection. Technical report, Intel Labs, Intel Corporation, Santa Clara, USA, 2002.

[40] David G. Lowe. Distinctive image features from scale-invariant keypoints. Technical report,
Computer Science Department University of British Columbia, Vancouver, B.C., Canada, 2003.

[41] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an appli-
cation to stereo vision. In Proceedings of Imaging Understanding Workshop, pages 121–130,
1981.

[42] James MacLean and John Tsotsos. Fast pattern recognition using gradient-descent search in
an image pyramid. In Proceedings of the 15 International Conference on Pattern Recognition,
pages 877–881, 2000.

[43] Steven C. McConnell. Code Complete, chapter 22. Microsoft Press, 2nd edition, 2004.

[44] Claudia Nieuwenhuis, Benjamin Berkels, Martin Rumpf, and Daniel Cremers. Interactive mo-
tion segmentation. Technical report, Technical University of Munich, Germany and University
of Bonn, Germany, 2010.

[45] Stephen Prata. C++ Primer Plus. SAMS, fifth edition, 2005.

[46] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In IEEE Inter-
national Conference on Robotics and Automation (ICRA), Shanghai, China, 9 may 2011.

[47] Lennart Råde and Bertil Westergern. Mathematics Handbook for Science and Engineering,
page 429. Studentlitteratur, Lund, 1998 and 2004.

[48] Jianbo Shi and Carlo Tomasi. Good features to track. Technical report, Computer Science
Department Cornell and Stanford University, 1994.

[49] Jan Skansholm and Ulf Bilting. Vägen till C. Studentlitteratur, 3rd edition, 2000.

[50] Jon Sporring and Joachim Weickert. Information measures in scale-spaces. IEEE Trans. In-
formation Theory, 45:1051–1058, 1999.

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

52 REFERENCES

[51] Linus Torvalds and Junio C Hamano. Git. http://git-scm.com/, June 2012.

[52] Guido van Rossum. Python programming language – official website. http://python.org/,
June 2012.

[53] Guido van Rossum and Barry Warsaw. Style guide for python code. http://www.python.org/
dev/peps/pep-0008/, June 2012.

[54] Rebecca Vincent and Dr. Olusegun Folorunso. A descriptive algorithm for sobel image edge
detection. In Proceedings of Informing Science & IT Education Conference (InSITE), 2009.

[55] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. Technical report, Mitsubishi Electric Research Labs and Compaq Cambridge Research
Lab, 2001.

[56] King Yuen Wong and Minas E. Spetsakis. Motion segmentation and tracking. Technical report,
Intel Corporation, Microcomputer Research Labs and MIT Media Lab, 2002.

[57] Jean yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker. Intel
Corporation, Microprocessor Research Labs, 2000.

[58] Andreas Zeller. Why programs fail, chapter 3. Morgan Kaufmann, 2nd edition, 2009.

http://git-scm.com/
http://python.org/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/

53 A APPENDIX A

A Appendix A

l e t thresho ld_points : th r e sho ld f o r a l l nr po in t s
th r e sho ld_ in t en s i t y : the i n t e n s i t y d i f f e r e n c e

between the tracked head images
th r e sho ld_ve l o c i ty : the r e sho ld for movement

o f the tracked po in t s

head_object = ex t r a c t head from image (1)
Save the ext rac t ed head as an image

t rack ing = True
l i s t_po i n t s = []

while t r a ck ing :

i f l ength o f l i s t_po i n t s <= thresho ld_points :
c l e a r l i s t_po i n t s
l i s t_po i n t s = generate po in t s in head_object (2)

for pt in l i s t_po i n t s :
r e f i n e p o s i t i o n o f pt (3)

c a l c u l a t e o p t i c a l f low (4)

for pt in l i s t_po i n t s :
i f get i n t e n s i t y pt <= thr e sho ld_ in t en s i t y : (5)

pt current_pos = pt prev_pos

c a l c u l a t e the v e l o c i t y for pt (6)

i f get v e l o c i t y pt >= thre sho ld_ve l o c i t y :
remove pt from l i s t_po i n t s

def ge t_ in t en s i ty (pt) : (7)
check d i f f in i n t e n s i t y
for pt . p rev ious_pos i t i on and pt . cur r ent_pos i t i on

54 A APPENDIX A

1. Select and save the face using Haar cascading 4.4.

2. The point’s auto and/or manually generated by using good features to track 4.3, the points
should be scattered all over the face and head.

3. LK needs a higher accuracy than pixel accuracy can provide, and therefore refined accuracy 4.2
is used.

4. The optical flow is calculated on each point by LK 5.8.

5. If the point is lost or does not meet the intensity requirements, the point is moved to its last
known position. This happens when the face is blocked.

6. LK might fail to update the points position if they are moving too fast, to prevent the tracking
from failing completely, a point that moves too quick is discarded.

7. Compare the pixel-intensity with previous frame.

If too many points have been discarded, the object can be relocated with SURF and new points
will be generated. The operation is looped from step two, but as mentioned above this algorithm is
untested.

	Introduction
	Background
	Purpose
	Problem
	Limitations
	Machine Learning
	3D Representation

	Outline

	Method
	Documentation
	Unified Modeling Language
	Version Control
	License
	Libraries
	Programming Language
	Testing

	Data Processing
	Microsoft Kinect
	Image
	Filters
	Smoothing
	Edge Detection
	Dilation and Erosion
	Histogram
	Histogram Back-Projection
	Average Filter

	Feature Extraction
	Corner Detection
	Harris Corner Detection

	Refined Accuracy
	Good Features to Track
	Cascade Classification
	SURF

	Tracking
	Template Matching
	Motion Templates
	Moments
	Motion Tracking
	Mean-Shift
	Cam-Shift

	Optical Flow
	Block Matching
	Lucas-Kanade

	Result
	Discussion
	Conclusion
	Appendix A

